基于级联磁的磁能采集器磁芯尺寸和收获功率优化

Min Gao, Hebert Lopez Herrera, Jinyeong Moon
{"title":"基于级联磁的磁能采集器磁芯尺寸和收获功率优化","authors":"Min Gao, Hebert Lopez Herrera, Jinyeong Moon","doi":"10.1109/APEC43580.2023.10131308","DOIUrl":null,"url":null,"abstract":"Magnetic energy harvesting (MEH) extracts energy from magnetic fields generated from AC current, providing power for environmental sensors, Internet of Things (IoTs), and monitoring nodes. The cascaded-magnetic-based electromagnetic energy harvesters, consisting of a clampable core and a high-permeability ungapped core, feature relatively higher density and predictability in energy harvesting. The clampable core only facilitates a non-intrusive mounting of the energy harvester onto the primary wire while the high-permeability core is the heart of the energy harvester to guarantee the maximum power extraction and usable output voltage. Therefore, reducing the clampable core size is critical to increase the power density without drastic power degradation. This article first presents the optimization conditions of the clampable core volume based on the harvested power level and other design requirements. FEM simulations using Ansys Maxwell and LTspice simulations are both executed to show the influence of the core parameters on the amount of harvested power and core saturation. This paper also presents an energy improvement method, controlling power transfer window via active switches, to improve the harvested power level. The boosted power is evaluated in this paper via experimental results.","PeriodicalId":151216,"journal":{"name":"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimization of Core Size and Harvested Power for Magnetic Energy Harvesters based on Cascaded Magnetics\",\"authors\":\"Min Gao, Hebert Lopez Herrera, Jinyeong Moon\",\"doi\":\"10.1109/APEC43580.2023.10131308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic energy harvesting (MEH) extracts energy from magnetic fields generated from AC current, providing power for environmental sensors, Internet of Things (IoTs), and monitoring nodes. The cascaded-magnetic-based electromagnetic energy harvesters, consisting of a clampable core and a high-permeability ungapped core, feature relatively higher density and predictability in energy harvesting. The clampable core only facilitates a non-intrusive mounting of the energy harvester onto the primary wire while the high-permeability core is the heart of the energy harvester to guarantee the maximum power extraction and usable output voltage. Therefore, reducing the clampable core size is critical to increase the power density without drastic power degradation. This article first presents the optimization conditions of the clampable core volume based on the harvested power level and other design requirements. FEM simulations using Ansys Maxwell and LTspice simulations are both executed to show the influence of the core parameters on the amount of harvested power and core saturation. This paper also presents an energy improvement method, controlling power transfer window via active switches, to improve the harvested power level. The boosted power is evaluated in this paper via experimental results.\",\"PeriodicalId\":151216,\"journal\":{\"name\":\"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC43580.2023.10131308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC43580.2023.10131308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

磁能收集(MEH)技术从交流电流产生的磁场中提取能量,为环境传感器、物联网(iot)和监控节点提供电力。基于级联磁的电磁能量采集器由可夹芯和高渗透率未夹芯组成,具有相对较高的密度和能量收集的可预测性。可夹芯仅便于将能量采集器非侵入式安装到初级导线上,而高磁导率芯是能量采集器的核心,以保证最大功率提取和可用输出电压。因此,减小可夹芯尺寸对于提高功率密度而不产生剧烈的功率衰减至关重要。本文首先提出了基于采集功率水平和其他设计要求的可夹芯体积优化条件。利用Ansys Maxwell和LTspice进行了有限元模拟,以显示堆芯参数对收获功率和堆芯饱和度的影响。本文还提出了一种能量改进方法,即通过有源开关控制功率传递窗口,以提高收获功率水平。本文通过实验结果对升压功率进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of Core Size and Harvested Power for Magnetic Energy Harvesters based on Cascaded Magnetics
Magnetic energy harvesting (MEH) extracts energy from magnetic fields generated from AC current, providing power for environmental sensors, Internet of Things (IoTs), and monitoring nodes. The cascaded-magnetic-based electromagnetic energy harvesters, consisting of a clampable core and a high-permeability ungapped core, feature relatively higher density and predictability in energy harvesting. The clampable core only facilitates a non-intrusive mounting of the energy harvester onto the primary wire while the high-permeability core is the heart of the energy harvester to guarantee the maximum power extraction and usable output voltage. Therefore, reducing the clampable core size is critical to increase the power density without drastic power degradation. This article first presents the optimization conditions of the clampable core volume based on the harvested power level and other design requirements. FEM simulations using Ansys Maxwell and LTspice simulations are both executed to show the influence of the core parameters on the amount of harvested power and core saturation. This paper also presents an energy improvement method, controlling power transfer window via active switches, to improve the harvested power level. The boosted power is evaluated in this paper via experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced Front-end Monitoring Scheme for Inductive Power Transfer Systems Based on Random Forest Regression An MPC based Power Management Method for Renewable Energy Hydrogen based DC Microgrids Overview of Machine Learning-Enabled Battery State Estimation Methods Ultra-Wideband Unidirectional Reset-Less Rogowski Coil Switch Current Sensor Topology for High-Frequency DC-DC Power Converters Common Source Inductance Compensation Technique for Dynamic Current Balancing in SiC MOSFETs Parallel Operations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1