Nikolaos Baras, Antonios Chatzisavvas, Dimitris Ziouzios, Ioannis Vanidis, Minas Dasygenis
{"title":"利用智能电池放置提高现代仓库的效率","authors":"Nikolaos Baras, Antonios Chatzisavvas, Dimitris Ziouzios, Ioannis Vanidis, Minas Dasygenis","doi":"10.3390/fi15110353","DOIUrl":null,"url":null,"abstract":"In the ever-evolving landscape of warehousing, the integration of unmanned ground vehicles (UGVs) has profoundly revolutionized operational efficiency. Despite this advancement, a key determinant of UGV productivity remains its energy management and battery placement strategies. While many studies explored optimizing the pathways within warehouses and determining ideal power station locales, there remains a gap in addressing the dynamic needs of energy-efficient UGVs operating in tandem. The current literature largely focuses on static designs, often overlooking the challenges of multi-UGV scenarios. This paper introduces a novel algorithm based on affinity propagation (AP) for smart battery and charging station placement in modern warehouses. The idea of the proposed algorithm is to divide the initial area into multiple sub-areas based on their traffic, and then identify the optimal battery location within each sub-area. A salient feature of this algorithm is its adeptness at determining the most strategic battery station placements, emphasizing uninterrupted operations and minimized downtimes. Through extensive evaluations in a synthesized realistic setting, our results underscore the algorithm’s proficiency in devising enhanced solutions within feasible time constraints, paving the way for more energy-efficient and cohesive UGV-driven warehouse systems.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"449 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Efficiency of Modern Warehouses Using Smart Battery Placement\",\"authors\":\"Nikolaos Baras, Antonios Chatzisavvas, Dimitris Ziouzios, Ioannis Vanidis, Minas Dasygenis\",\"doi\":\"10.3390/fi15110353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the ever-evolving landscape of warehousing, the integration of unmanned ground vehicles (UGVs) has profoundly revolutionized operational efficiency. Despite this advancement, a key determinant of UGV productivity remains its energy management and battery placement strategies. While many studies explored optimizing the pathways within warehouses and determining ideal power station locales, there remains a gap in addressing the dynamic needs of energy-efficient UGVs operating in tandem. The current literature largely focuses on static designs, often overlooking the challenges of multi-UGV scenarios. This paper introduces a novel algorithm based on affinity propagation (AP) for smart battery and charging station placement in modern warehouses. The idea of the proposed algorithm is to divide the initial area into multiple sub-areas based on their traffic, and then identify the optimal battery location within each sub-area. A salient feature of this algorithm is its adeptness at determining the most strategic battery station placements, emphasizing uninterrupted operations and minimized downtimes. Through extensive evaluations in a synthesized realistic setting, our results underscore the algorithm’s proficiency in devising enhanced solutions within feasible time constraints, paving the way for more energy-efficient and cohesive UGV-driven warehouse systems.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":\"449 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi15110353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi15110353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Improving the Efficiency of Modern Warehouses Using Smart Battery Placement
In the ever-evolving landscape of warehousing, the integration of unmanned ground vehicles (UGVs) has profoundly revolutionized operational efficiency. Despite this advancement, a key determinant of UGV productivity remains its energy management and battery placement strategies. While many studies explored optimizing the pathways within warehouses and determining ideal power station locales, there remains a gap in addressing the dynamic needs of energy-efficient UGVs operating in tandem. The current literature largely focuses on static designs, often overlooking the challenges of multi-UGV scenarios. This paper introduces a novel algorithm based on affinity propagation (AP) for smart battery and charging station placement in modern warehouses. The idea of the proposed algorithm is to divide the initial area into multiple sub-areas based on their traffic, and then identify the optimal battery location within each sub-area. A salient feature of this algorithm is its adeptness at determining the most strategic battery station placements, emphasizing uninterrupted operations and minimized downtimes. Through extensive evaluations in a synthesized realistic setting, our results underscore the algorithm’s proficiency in devising enhanced solutions within feasible time constraints, paving the way for more energy-efficient and cohesive UGV-driven warehouse systems.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.