水与庚烷界面火花放电:乳化及对放电概率的影响

Audren Dorval, Luc Stafford, Ahmad Hamdan
{"title":"水与庚烷界面火花放电:乳化及对放电概率的影响","authors":"Audren Dorval, Luc Stafford, Ahmad Hamdan","doi":"10.1088/1361-6463/acfd39","DOIUrl":null,"url":null,"abstract":"Abstract Spark discharges in liquid have shown great potential for use in numerous applications, such as pollutant degradation, precision micromachining, and nanomaterials production. Herein, spark discharges are initiated at the interface of two immiscible liquids, heptane and water. This leads to the formation of an emulsion via mechanisms akin to bubble dynamics and instabilities at the gas–liquid. At high discharge number, an additional mechanism contributes to emulsion formation, resulting in an increase in the number of smaller heptane droplets in water. Analyses of the current–voltage characteristics show that high probability of discharge occurrence is obtained when the electrodes are aligned with the interface. This result is correlated with the low erosion rate of the electrodes. In the case of discharges at the interface, we observed that beyond a certain number of discharges, the breakdown voltage drops; far from the interface, it increases with the discharge number. Based on 2D simulation with a Monte Carlo approach to consider various droplet distribution in water, the electric field distribution is determined. The results support the fact that the decrease in breakdown voltage may be attributed to the intensification of the E -field in water close the heptane droplet. Therefore, spark discharges generated at the interface of a heptane/water system produce an emulsion of heptane in water, which facilitates the occurrence of subsequent discharges by intensifying the electric field and reducing the breakdown voltage.","PeriodicalId":16833,"journal":{"name":"Journal of Physics D","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spark discharges at the interface of water and heptane: Emulsification and effect on discharge probability\",\"authors\":\"Audren Dorval, Luc Stafford, Ahmad Hamdan\",\"doi\":\"10.1088/1361-6463/acfd39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Spark discharges in liquid have shown great potential for use in numerous applications, such as pollutant degradation, precision micromachining, and nanomaterials production. Herein, spark discharges are initiated at the interface of two immiscible liquids, heptane and water. This leads to the formation of an emulsion via mechanisms akin to bubble dynamics and instabilities at the gas–liquid. At high discharge number, an additional mechanism contributes to emulsion formation, resulting in an increase in the number of smaller heptane droplets in water. Analyses of the current–voltage characteristics show that high probability of discharge occurrence is obtained when the electrodes are aligned with the interface. This result is correlated with the low erosion rate of the electrodes. In the case of discharges at the interface, we observed that beyond a certain number of discharges, the breakdown voltage drops; far from the interface, it increases with the discharge number. Based on 2D simulation with a Monte Carlo approach to consider various droplet distribution in water, the electric field distribution is determined. The results support the fact that the decrease in breakdown voltage may be attributed to the intensification of the E -field in water close the heptane droplet. Therefore, spark discharges generated at the interface of a heptane/water system produce an emulsion of heptane in water, which facilitates the occurrence of subsequent discharges by intensifying the electric field and reducing the breakdown voltage.\",\"PeriodicalId\":16833,\"journal\":{\"name\":\"Journal of Physics D\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/acfd39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6463/acfd39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要:液体火花放电在污染物降解、精密微加工和纳米材料生产等领域显示出巨大的应用潜力。在这里,火花放电是在两种不混相液体,庚烷和水的界面上开始的。这导致通过类似于气泡动力学和气液不稳定性的机制形成乳状液。在高放电次数下,一种额外的机制有助于乳液的形成,导致水中较小的庚烷液滴数量增加。电流-电压特性分析表明,当电极与界面对齐时,放电发生的概率较大。这一结果与电极的低侵蚀率有关。在界面处放电的情况下,我们观察到放电次数超过一定次数后,击穿电压下降;在远离界面处,随放电次数增加而增大。利用蒙特卡罗方法进行二维模拟,考虑了不同液滴在水中的分布,确定了电场的分布。结果支持了击穿电压的降低可能是由于靠近庚烷液滴的水中E场的增强所致。因此,在庚烷/水体系界面处产生的火花放电会在水中形成庚烷乳液,通过增强电场和降低击穿电压,有利于后续放电的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spark discharges at the interface of water and heptane: Emulsification and effect on discharge probability
Abstract Spark discharges in liquid have shown great potential for use in numerous applications, such as pollutant degradation, precision micromachining, and nanomaterials production. Herein, spark discharges are initiated at the interface of two immiscible liquids, heptane and water. This leads to the formation of an emulsion via mechanisms akin to bubble dynamics and instabilities at the gas–liquid. At high discharge number, an additional mechanism contributes to emulsion formation, resulting in an increase in the number of smaller heptane droplets in water. Analyses of the current–voltage characteristics show that high probability of discharge occurrence is obtained when the electrodes are aligned with the interface. This result is correlated with the low erosion rate of the electrodes. In the case of discharges at the interface, we observed that beyond a certain number of discharges, the breakdown voltage drops; far from the interface, it increases with the discharge number. Based on 2D simulation with a Monte Carlo approach to consider various droplet distribution in water, the electric field distribution is determined. The results support the fact that the decrease in breakdown voltage may be attributed to the intensification of the E -field in water close the heptane droplet. Therefore, spark discharges generated at the interface of a heptane/water system produce an emulsion of heptane in water, which facilitates the occurrence of subsequent discharges by intensifying the electric field and reducing the breakdown voltage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The study of N-polar GaN/InAlN MOS-HEMT and T-gate HEMT biosensors Magnetic levitation of nanoscale materials: the critical role of effective density Ammonia Cracking for Hydrogen Production using a Microwave Argon Plasma Jet UV irradiation assisted low-temperature process for thin film transistor performance improvement of praseodymium-doped indium zinc oxide Dynamic Mode Decomposition for data-driven analysis and reduced-order modelling of E×B plasmas: I. Extraction of spatiotemporally coherent patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1