绿宝石灰蛀虫入侵和树木死亡后河岸林隙下ET减少和地下水位持续升高的观察

Wendy Robertson, Sarah Krzemien, Patrick Engelken, Deborah G. McCullough
{"title":"绿宝石灰蛀虫入侵和树木死亡后河岸林隙下ET减少和地下水位持续升高的观察","authors":"Wendy Robertson, Sarah Krzemien, Patrick Engelken, Deborah G. McCullough","doi":"10.22541/au.169999564.44755050/v1","DOIUrl":null,"url":null,"abstract":"Emerald ash borer (EAB) ( Agrilus planipennis Fairmaire), an invasive, phloem-feeding beetle native to Asia, has killed millions of ash ( Fraxinus spp.) trees in North America since it was detected in southeast Michigan in 2002. Consistently high mortality of black ash ( Fraxinus nigra ) and green ash ( F. pennsylvanica ) which often occur in riparian forests is a concern given their role in regulating soil moisture and shallow groundwater levels. We monitored hydrologic processes in a riparian forest in southwest Michigan to assess impacts of EAB invasion and subsequent ash mortality. From 2018-2022, we recorded soil moisture, depth to groundwater and meteorological variables at 15-min intervals throughout the growing season in a canopy gap following EAB-caused ash mortality and in adjacent, unaffected forest in the Augusta Creek riparian zone. Groundwater contributions to evapotranspiration (ET ) were estimated using a groundwater level fluctuation (WLF) method. Significant differences in volumetric soil moisture content (16-26% higher in the gap than forest), average depth to water (10 cm in the gap vs 70 cm below land surface in the forest) and mean daily ET (0.6 in the gap vs 3.0 mm per day in the forest) persisted across four growing seasons. Within the gap, prolonged saturation of the near surface may be contributing to a shift from a forested riparian ecosystem to herb and sedge-dominated wetland. These differences have implications for an array of riparian zone ecosystem services, a concern given the extent of ash mortality already sustained in much eastern North America.","PeriodicalId":487619,"journal":{"name":"Authorea (Authorea)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observations of reduced ET and persistent elevated water table beneath a riparian forest gap following emerald ash borer invasion and tree mortality\",\"authors\":\"Wendy Robertson, Sarah Krzemien, Patrick Engelken, Deborah G. McCullough\",\"doi\":\"10.22541/au.169999564.44755050/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerald ash borer (EAB) ( Agrilus planipennis Fairmaire), an invasive, phloem-feeding beetle native to Asia, has killed millions of ash ( Fraxinus spp.) trees in North America since it was detected in southeast Michigan in 2002. Consistently high mortality of black ash ( Fraxinus nigra ) and green ash ( F. pennsylvanica ) which often occur in riparian forests is a concern given their role in regulating soil moisture and shallow groundwater levels. We monitored hydrologic processes in a riparian forest in southwest Michigan to assess impacts of EAB invasion and subsequent ash mortality. From 2018-2022, we recorded soil moisture, depth to groundwater and meteorological variables at 15-min intervals throughout the growing season in a canopy gap following EAB-caused ash mortality and in adjacent, unaffected forest in the Augusta Creek riparian zone. Groundwater contributions to evapotranspiration (ET ) were estimated using a groundwater level fluctuation (WLF) method. Significant differences in volumetric soil moisture content (16-26% higher in the gap than forest), average depth to water (10 cm in the gap vs 70 cm below land surface in the forest) and mean daily ET (0.6 in the gap vs 3.0 mm per day in the forest) persisted across four growing seasons. Within the gap, prolonged saturation of the near surface may be contributing to a shift from a forested riparian ecosystem to herb and sedge-dominated wetland. These differences have implications for an array of riparian zone ecosystem services, a concern given the extent of ash mortality already sustained in much eastern North America.\",\"PeriodicalId\":487619,\"journal\":{\"name\":\"Authorea (Authorea)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Authorea (Authorea)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22541/au.169999564.44755050/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Authorea (Authorea)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22541/au.169999564.44755050/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

绿灰螟(EAB) (Agrilus planipennis Fairmaire)是一种原产于亚洲的入侵性韧皮部食性甲虫,自2002年在密歇根州东南部被发现以来,已经杀死了北美数百万棵白蜡树(蜡树属)。经常出现在河岸森林中的黑灰(黑蜡)和绿灰(F. pennsylvania)的死亡率一直很高,这是一个令人关切的问题,因为它们在调节土壤湿度和浅层地下水位方面起着作用。我们监测了密歇根西南部河岸森林的水文过程,以评估EAB入侵和随后的灰死亡率的影响。从2018年到2022年,我们在整个生长季节,在eab引起的白蜡死亡后的树冠间隙和奥古斯塔河河岸带邻近的未受影响的森林中,每隔15分钟记录一次土壤湿度、地下水深度和气象变量。利用地下水位波动法估算了地下水对蒸散发(ET)的贡献。在四个生长季节中,土壤体积含水量(林隙比森林高16-26%)、平均到水深度(林隙10厘米比森林地表以下70厘米)和平均日蒸散量(林隙0.6毫米比森林3.0毫米)的显著差异持续存在。在间隙内,近地表的长期饱和可能有助于从森林河岸生态系统向草本和莎草为主的湿地转变。这些差异对一系列河岸生态系统服务产生了影响,考虑到北美东部大部分地区已经持续的灰死亡率,这是一个令人担忧的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Observations of reduced ET and persistent elevated water table beneath a riparian forest gap following emerald ash borer invasion and tree mortality
Emerald ash borer (EAB) ( Agrilus planipennis Fairmaire), an invasive, phloem-feeding beetle native to Asia, has killed millions of ash ( Fraxinus spp.) trees in North America since it was detected in southeast Michigan in 2002. Consistently high mortality of black ash ( Fraxinus nigra ) and green ash ( F. pennsylvanica ) which often occur in riparian forests is a concern given their role in regulating soil moisture and shallow groundwater levels. We monitored hydrologic processes in a riparian forest in southwest Michigan to assess impacts of EAB invasion and subsequent ash mortality. From 2018-2022, we recorded soil moisture, depth to groundwater and meteorological variables at 15-min intervals throughout the growing season in a canopy gap following EAB-caused ash mortality and in adjacent, unaffected forest in the Augusta Creek riparian zone. Groundwater contributions to evapotranspiration (ET ) were estimated using a groundwater level fluctuation (WLF) method. Significant differences in volumetric soil moisture content (16-26% higher in the gap than forest), average depth to water (10 cm in the gap vs 70 cm below land surface in the forest) and mean daily ET (0.6 in the gap vs 3.0 mm per day in the forest) persisted across four growing seasons. Within the gap, prolonged saturation of the near surface may be contributing to a shift from a forested riparian ecosystem to herb and sedge-dominated wetland. These differences have implications for an array of riparian zone ecosystem services, a concern given the extent of ash mortality already sustained in much eastern North America.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heart rate variability biofeedback acutely improves attentional control only in highly stressed individuals Relationship between microRNA-9 and breast cancer The impact of land use change on the diversity and emergence of fungal pathogens Severe seasonal shifts in tropical insect ephemerality drive bat foraging effort Using Circulating MicroRNAs as Noninvasive Cancer Biomarkers in Breast Cancer is a Cutting-Edge Application of MicroRNA Profiling Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1