一种带有附加微力传感器的经尿道膀胱内壁微型机器人

Samson Adejokun, Shashank Kumat, Panos Shiakolas
{"title":"一种带有附加微力传感器的经尿道膀胱内壁微型机器人","authors":"Samson Adejokun, Shashank Kumat, Panos Shiakolas","doi":"10.1115/1.4056884","DOIUrl":null,"url":null,"abstract":"Abstract We present the conceptual design and limited functionality prototype and characterization of a system for application in transurethral palpation of any targeted area of the bladder interior wall tissue consisting of a robotic manipulator and a microforce sensor attached at its tip all less than 3.5 mm in diameter. A hyper-redundant ten-joint six degrees-of-freedom (6DOF) manipulator (5DOF rigid and five-joint continuum segments) is presented along with the forward and inverse kinematics analyses based on a Jacobian formulation to prevent configuration singularities. Simulated motion studies demonstrate the ability of the proposed manipulator to attain a desired pose (normal to the tissue) with any area in the bladder including the difficult to reach trigone area. A strain gauge-based microforce sensor is designed using finite element analysis (safety factor > 3), prototyped using additive manufacturing, and characterized. The characterized sensor was used to acquire in vivo measurements to evaluate human palm tissue viscoelastic properties. A single module of the continuum segment is designed and prototyped using additive manufacturing, and used to characterize its tension-bend angle behavior. Finite element analysis is used to improve structurally weak regions of the vertebra. A three-joint four-vertebrae prototype was successfully actuated to reach a bend state using tendons. The developed robot and sensor prototypes demonstrate capabilities of the proposed concept which could be a possible solution to quantitatively evaluate localized biomechanical properties of the bladder tissue to improve treatment and provide better patient care.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Microrobot With an Attached Microforce Sensor for Transurethral Access to the Bladder Interior Wall\",\"authors\":\"Samson Adejokun, Shashank Kumat, Panos Shiakolas\",\"doi\":\"10.1115/1.4056884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present the conceptual design and limited functionality prototype and characterization of a system for application in transurethral palpation of any targeted area of the bladder interior wall tissue consisting of a robotic manipulator and a microforce sensor attached at its tip all less than 3.5 mm in diameter. A hyper-redundant ten-joint six degrees-of-freedom (6DOF) manipulator (5DOF rigid and five-joint continuum segments) is presented along with the forward and inverse kinematics analyses based on a Jacobian formulation to prevent configuration singularities. Simulated motion studies demonstrate the ability of the proposed manipulator to attain a desired pose (normal to the tissue) with any area in the bladder including the difficult to reach trigone area. A strain gauge-based microforce sensor is designed using finite element analysis (safety factor > 3), prototyped using additive manufacturing, and characterized. The characterized sensor was used to acquire in vivo measurements to evaluate human palm tissue viscoelastic properties. A single module of the continuum segment is designed and prototyped using additive manufacturing, and used to characterize its tension-bend angle behavior. Finite element analysis is used to improve structurally weak regions of the vertebra. A three-joint four-vertebrae prototype was successfully actuated to reach a bend state using tendons. The developed robot and sensor prototypes demonstrate capabilities of the proposed concept which could be a possible solution to quantitatively evaluate localized biomechanical properties of the bladder tissue to improve treatment and provide better patient care.\",\"PeriodicalId\":73734,\"journal\":{\"name\":\"Journal of engineering and science in medical diagnostics and therapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of engineering and science in medical diagnostics and therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4056884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of engineering and science in medical diagnostics and therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4056884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要:我们介绍了一种用于经尿道膀胱内壁组织任何目标区域触诊的系统的概念设计和有限功能原型和特性,该系统由机器人机械手和附着在其尖端的微力传感器组成,其直径小于3.5 mm。提出了一种超冗余十关节六自由度机械臂(五自由度刚性段和五关节连续段),并基于防止位形奇异的雅可比矩阵进行了正运动学和逆运动学分析。模拟运动研究表明,所提出的机械臂能够在膀胱的任何区域(包括难以到达的三角区)达到所需的姿势(与组织正常)。利用有限元分析(安全系数)设计了一种基于应变片的微力传感器。3),使用增材制造进行原型制作,并进行表征。该传感器被用于获得体内测量,以评估人体手掌组织的粘弹性特性。使用增材制造技术对连续体段的单个模块进行了设计和原型制作,并用于表征其拉伸弯曲角行为。有限元分析用于改善椎体结构薄弱区域。一个三关节四椎体原型成功地使用肌腱达到弯曲状态。开发的机器人和传感器原型展示了所提出概念的能力,这可能是定量评估膀胱组织局部生物力学特性的可能解决方案,以改善治疗并提供更好的患者护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Microrobot With an Attached Microforce Sensor for Transurethral Access to the Bladder Interior Wall
Abstract We present the conceptual design and limited functionality prototype and characterization of a system for application in transurethral palpation of any targeted area of the bladder interior wall tissue consisting of a robotic manipulator and a microforce sensor attached at its tip all less than 3.5 mm in diameter. A hyper-redundant ten-joint six degrees-of-freedom (6DOF) manipulator (5DOF rigid and five-joint continuum segments) is presented along with the forward and inverse kinematics analyses based on a Jacobian formulation to prevent configuration singularities. Simulated motion studies demonstrate the ability of the proposed manipulator to attain a desired pose (normal to the tissue) with any area in the bladder including the difficult to reach trigone area. A strain gauge-based microforce sensor is designed using finite element analysis (safety factor > 3), prototyped using additive manufacturing, and characterized. The characterized sensor was used to acquire in vivo measurements to evaluate human palm tissue viscoelastic properties. A single module of the continuum segment is designed and prototyped using additive manufacturing, and used to characterize its tension-bend angle behavior. Finite element analysis is used to improve structurally weak regions of the vertebra. A three-joint four-vertebrae prototype was successfully actuated to reach a bend state using tendons. The developed robot and sensor prototypes demonstrate capabilities of the proposed concept which could be a possible solution to quantitatively evaluate localized biomechanical properties of the bladder tissue to improve treatment and provide better patient care.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-Speed Three-Dimensional-Digital Image Correlation and Schlieren Imaging Integrated With Shock Tube Loading for Investigating Dynamic Response of Human Tympanic Membrane Exposed to Blasts. Quantifying the Fascicular Changes in Recovered Achilles Tendon Patients Using Diffusion Magnetic Resonance Imaging and Tractography. Assistive Technology for Real-Time Fall Prevention during Walking: Evaluation of the Effect of an Intelligent Foot Orthosis A Simple Poc Device for Temperature Control of Multiple Reactions During Recombinase Polymerase Amplification Auxetic Structure Inspired Microneedle Arrays for Minimally Invasive Drug Delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1