大气压等离子体射流输出成分的数据驱动预测

Li Lin, Sophia Gershman, Yevgeny Raitses, Michael Keidar
{"title":"大气压等离子体射流输出成分的数据驱动预测","authors":"Li Lin, Sophia Gershman, Yevgeny Raitses, Michael Keidar","doi":"10.1088/1361-6463/acfcc7","DOIUrl":null,"url":null,"abstract":"Abstract Cold atmospheric plasma (CAP) in open air hosts numerous chemical species engaged in thousands of chemical reactions. Comprehensive diagnosis of its chemical composition is important across various fields from medicine, where reactive oxygen and nitrogen play key roles, to surface modification. In applications, a centimeter-scale helium–air jet operates for minutes, featuring micrometer-sized streamers and an atmospheric pressure-induced collision frequency in the hundreds of GHz range. To address this intricate multi-scale issue, we introduce a machine learning approach: using a physics-informed neural network (PINN) to tackle the multi-scale complexities inherent in predicting the complete list of species concentrations, gas temperature, and electron temperature of a CAP jet supplied with a mixture of helium and air. Experimental measurements of O 3 , N 2 O, and NO 2 concentrations downstream of the plasma jet, combined with fundamental physics laws, the conservation of mass and charge, constrain the PINN, enabling it to predict the concentrations of all species that are not available from the experiment, along with gas and electron temperatures. The results, therefore, obey all the physical laws we provided and can have a chemical balance with the measured concentrations. This methodology holds promise for describing and potentially regulating complex systems with limited experimental datasets.","PeriodicalId":16833,"journal":{"name":"Journal of Physics D","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven prediction of the output composition of an atmospheric pressure plasma jet\",\"authors\":\"Li Lin, Sophia Gershman, Yevgeny Raitses, Michael Keidar\",\"doi\":\"10.1088/1361-6463/acfcc7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Cold atmospheric plasma (CAP) in open air hosts numerous chemical species engaged in thousands of chemical reactions. Comprehensive diagnosis of its chemical composition is important across various fields from medicine, where reactive oxygen and nitrogen play key roles, to surface modification. In applications, a centimeter-scale helium–air jet operates for minutes, featuring micrometer-sized streamers and an atmospheric pressure-induced collision frequency in the hundreds of GHz range. To address this intricate multi-scale issue, we introduce a machine learning approach: using a physics-informed neural network (PINN) to tackle the multi-scale complexities inherent in predicting the complete list of species concentrations, gas temperature, and electron temperature of a CAP jet supplied with a mixture of helium and air. Experimental measurements of O 3 , N 2 O, and NO 2 concentrations downstream of the plasma jet, combined with fundamental physics laws, the conservation of mass and charge, constrain the PINN, enabling it to predict the concentrations of all species that are not available from the experiment, along with gas and electron temperatures. The results, therefore, obey all the physical laws we provided and can have a chemical balance with the measured concentrations. This methodology holds promise for describing and potentially regulating complex systems with limited experimental datasets.\",\"PeriodicalId\":16833,\"journal\":{\"name\":\"Journal of Physics D\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/acfcc7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6463/acfcc7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

露天冷大气等离子体(CAP)承载了大量化学物质,参与了数千种化学反应。其化学成分的综合诊断在从活性氧和氮起关键作用的医学到表面改性的各个领域都很重要。在实际应用中,厘米级的氦-空气射流工作几分钟,具有微米级的流线和数百GHz范围内的大气压引起的碰撞频率。为了解决这个复杂的多尺度问题,我们引入了一种机器学习方法:使用物理信息神经网络(PINN)来解决预测由氦气和空气混合提供的CAP射流的物种浓度、气体温度和电子温度的完整列表所固有的多尺度复杂性。对等离子体射流下游的o3、n2o和no2浓度的实验测量,结合基本物理定律、质量和电荷守恒定律,约束了PINN,使其能够预测实验中无法获得的所有物质的浓度,以及气体和电子温度。因此,结果符合我们提供的所有物理定律,并且与测量的浓度具有化学平衡。这种方法有望用有限的实验数据集描述和潜在地调节复杂的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-driven prediction of the output composition of an atmospheric pressure plasma jet
Abstract Cold atmospheric plasma (CAP) in open air hosts numerous chemical species engaged in thousands of chemical reactions. Comprehensive diagnosis of its chemical composition is important across various fields from medicine, where reactive oxygen and nitrogen play key roles, to surface modification. In applications, a centimeter-scale helium–air jet operates for minutes, featuring micrometer-sized streamers and an atmospheric pressure-induced collision frequency in the hundreds of GHz range. To address this intricate multi-scale issue, we introduce a machine learning approach: using a physics-informed neural network (PINN) to tackle the multi-scale complexities inherent in predicting the complete list of species concentrations, gas temperature, and electron temperature of a CAP jet supplied with a mixture of helium and air. Experimental measurements of O 3 , N 2 O, and NO 2 concentrations downstream of the plasma jet, combined with fundamental physics laws, the conservation of mass and charge, constrain the PINN, enabling it to predict the concentrations of all species that are not available from the experiment, along with gas and electron temperatures. The results, therefore, obey all the physical laws we provided and can have a chemical balance with the measured concentrations. This methodology holds promise for describing and potentially regulating complex systems with limited experimental datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The study of N-polar GaN/InAlN MOS-HEMT and T-gate HEMT biosensors Magnetic levitation of nanoscale materials: the critical role of effective density Ammonia Cracking for Hydrogen Production using a Microwave Argon Plasma Jet UV irradiation assisted low-temperature process for thin film transistor performance improvement of praseodymium-doped indium zinc oxide Dynamic Mode Decomposition for data-driven analysis and reduced-order modelling of E×B plasmas: I. Extraction of spatiotemporally coherent patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1