{"title":"基于anfiss的气相色谱中Kovats保留指数预测的QSRR模型","authors":"Rinaldi Idroes, Teuku Rizky Noviandy, Aga Maulana, Rivansyah Suhendra, Novi Reandy Sasmita, Muslem Muslem, Ghazi Mauer Idroes, Raudhatul Jannah, Razief Perucha Fauzie Afidh, Irvanizam Irvanizam","doi":"10.60084/ijds.v1i1.73","DOIUrl":null,"url":null,"abstract":"This study aims to evaluate the implementation and effectiveness of the Adaptive Neuro-Fuzzy Inference System (ANFIS) based Quantitative Structure Retention Relationship (QSRR) to predict the Kovats retention index of compounds in gas chromatography. The model was trained using 340 essential oil compounds and their molecular descriptors. The evaluation of the ANFIS models revealed promising results, achieving an R2 of 0.974, an RMSE of 48.12, and an MAPE of 3.3% on the testing set. These findings highlight the ANFIS approach as remarkably accurate in its predictive capacity for determining the Kovats retention index in the context of gas chromatography. This study provides valuable perspectives on the efficiency of retention index prediction through ANFIS-based QSRR methods and the potential practicality in compound analysis and chromatographic optimization.","PeriodicalId":486036,"journal":{"name":"Infolitika Journal of Data Science","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ANFIS-Based QSRR Modelling for Kovats Retention Index Prediction in Gas Chromatography\",\"authors\":\"Rinaldi Idroes, Teuku Rizky Noviandy, Aga Maulana, Rivansyah Suhendra, Novi Reandy Sasmita, Muslem Muslem, Ghazi Mauer Idroes, Raudhatul Jannah, Razief Perucha Fauzie Afidh, Irvanizam Irvanizam\",\"doi\":\"10.60084/ijds.v1i1.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to evaluate the implementation and effectiveness of the Adaptive Neuro-Fuzzy Inference System (ANFIS) based Quantitative Structure Retention Relationship (QSRR) to predict the Kovats retention index of compounds in gas chromatography. The model was trained using 340 essential oil compounds and their molecular descriptors. The evaluation of the ANFIS models revealed promising results, achieving an R2 of 0.974, an RMSE of 48.12, and an MAPE of 3.3% on the testing set. These findings highlight the ANFIS approach as remarkably accurate in its predictive capacity for determining the Kovats retention index in the context of gas chromatography. This study provides valuable perspectives on the efficiency of retention index prediction through ANFIS-based QSRR methods and the potential practicality in compound analysis and chromatographic optimization.\",\"PeriodicalId\":486036,\"journal\":{\"name\":\"Infolitika Journal of Data Science\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infolitika Journal of Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.60084/ijds.v1i1.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infolitika Journal of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.60084/ijds.v1i1.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ANFIS-Based QSRR Modelling for Kovats Retention Index Prediction in Gas Chromatography
This study aims to evaluate the implementation and effectiveness of the Adaptive Neuro-Fuzzy Inference System (ANFIS) based Quantitative Structure Retention Relationship (QSRR) to predict the Kovats retention index of compounds in gas chromatography. The model was trained using 340 essential oil compounds and their molecular descriptors. The evaluation of the ANFIS models revealed promising results, achieving an R2 of 0.974, an RMSE of 48.12, and an MAPE of 3.3% on the testing set. These findings highlight the ANFIS approach as remarkably accurate in its predictive capacity for determining the Kovats retention index in the context of gas chromatography. This study provides valuable perspectives on the efficiency of retention index prediction through ANFIS-based QSRR methods and the potential practicality in compound analysis and chromatographic optimization.