基于三维卷积神经网络的驾驶员分心分类

Kelvin Kwakye, Armstrong Aboah, Younho Seong, Sun Yi
{"title":"基于三维卷积神经网络的驾驶员分心分类","authors":"Kelvin Kwakye, Armstrong Aboah, Younho Seong, Sun Yi","doi":"10.1177/21695067231192576","DOIUrl":null,"url":null,"abstract":"Distracted driving is a dangerous driving behavior that causes numerous accidents on US roads each year. It is critical to identify distracted drivers in order to prevent such accidents. Previous studies attempted to detect distracted driving using heuristics and machine learning; however, none of these methods could capture the problem's spatiotemporal features. As a result, the purpose of this study was to use a 3D convolutional neural network (CNN) that can capture both spatial and temporal information to classify distracted drivers based on facial features and behavioral cues. We used the Database to Enable Facial Analysis for Driving Studies (DEFADS), an open-source dataset containing 77 human subjects performing scripted driving-related activities, to achieve this goal. The PyTorch video library was used to train the model. The 3D CNN achieved an overall recall and precision of 97.6 and 98.1, respectively, indicating its efficacy in detecting distracted drivers in the real world.","PeriodicalId":74544,"journal":{"name":"Proceedings of the Human Factors and Ergonomics Society ... Annual Meeting. Human Factors and Ergonomics Society. Annual meeting","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Human Driver Distraction Using 3D Convolutional Neural Networks\",\"authors\":\"Kelvin Kwakye, Armstrong Aboah, Younho Seong, Sun Yi\",\"doi\":\"10.1177/21695067231192576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distracted driving is a dangerous driving behavior that causes numerous accidents on US roads each year. It is critical to identify distracted drivers in order to prevent such accidents. Previous studies attempted to detect distracted driving using heuristics and machine learning; however, none of these methods could capture the problem's spatiotemporal features. As a result, the purpose of this study was to use a 3D convolutional neural network (CNN) that can capture both spatial and temporal information to classify distracted drivers based on facial features and behavioral cues. We used the Database to Enable Facial Analysis for Driving Studies (DEFADS), an open-source dataset containing 77 human subjects performing scripted driving-related activities, to achieve this goal. The PyTorch video library was used to train the model. The 3D CNN achieved an overall recall and precision of 97.6 and 98.1, respectively, indicating its efficacy in detecting distracted drivers in the real world.\",\"PeriodicalId\":74544,\"journal\":{\"name\":\"Proceedings of the Human Factors and Ergonomics Society ... Annual Meeting. Human Factors and Ergonomics Society. Annual meeting\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Human Factors and Ergonomics Society ... Annual Meeting. Human Factors and Ergonomics Society. Annual meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/21695067231192576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Human Factors and Ergonomics Society ... Annual Meeting. Human Factors and Ergonomics Society. Annual meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/21695067231192576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分心驾驶是一种危险的驾驶行为,每年在美国道路上造成无数事故。为了防止此类事故,识别分心的司机是至关重要的。之前的研究试图使用启发式和机器学习来检测分心驾驶;然而,这些方法都无法捕捉到问题的时空特征。因此,本研究的目的是使用3D卷积神经网络(CNN),该网络可以捕获空间和时间信息,根据面部特征和行为线索对分心的驾驶员进行分类。为了实现这一目标,我们使用了数据库来启用驾驶研究面部分析(DEFADS),这是一个包含77名人类受试者执行脚本化驾驶相关活动的开源数据集。PyTorch视频库用于训练模型。3D CNN的总体召回率和准确率分别为97.6和98.1,表明其在检测现实世界中分心司机方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of Human Driver Distraction Using 3D Convolutional Neural Networks
Distracted driving is a dangerous driving behavior that causes numerous accidents on US roads each year. It is critical to identify distracted drivers in order to prevent such accidents. Previous studies attempted to detect distracted driving using heuristics and machine learning; however, none of these methods could capture the problem's spatiotemporal features. As a result, the purpose of this study was to use a 3D convolutional neural network (CNN) that can capture both spatial and temporal information to classify distracted drivers based on facial features and behavioral cues. We used the Database to Enable Facial Analysis for Driving Studies (DEFADS), an open-source dataset containing 77 human subjects performing scripted driving-related activities, to achieve this goal. The PyTorch video library was used to train the model. The 3D CNN achieved an overall recall and precision of 97.6 and 98.1, respectively, indicating its efficacy in detecting distracted drivers in the real world.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Is vitamin A an antioxidant? Investigating Human Physiological Responses to Work-Related Stress Phishing in Social Media: Investigating Training Techniques on Instagram Shop Factor Analysis of a Generalized Video Game Experience Measure A Completion Rate Conundrum: Reducing bias in the Single Usability Metric
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1