理解多模式在线学习环境中以用户为中心的人机交互的学习参与

Jiahui Ma, Elizabeth A. Johnson, Bernadette McCrory
{"title":"理解多模式在线学习环境中以用户为中心的人机交互的学习参与","authors":"Jiahui Ma, Elizabeth A. Johnson, Bernadette McCrory","doi":"10.1177/21695067231193675","DOIUrl":null,"url":null,"abstract":"Multimodal online learning environment improves learning experience through different modalities such as visual, auditory, and kinesthetic interactions. Multimodal learning analytics (MMLA) with multiple biosensors provides a way to overcome the challenge of analyzing the multiple interaction types simultaneously. Galvanic skin response/electrodermal activity (GSR/EDA), eye tracking and facial expression were used to measure the learning interaction in a multimodal online learning environment. iMotions and R software were used to post-process and analyze the time-synchronized biosensor data. GSR/EDA, eye tracking and facial expression showed real-time cognitive, emotional, and visual learning engagement for each interaction type. There is a tremendous potential for using MMLA with multiple biosensors to understand learning engagement in a multimodal online learning environment was shown in this study.","PeriodicalId":74544,"journal":{"name":"Proceedings of the Human Factors and Ergonomics Society ... Annual Meeting. Human Factors and Ergonomics Society. Annual meeting","volume":"63 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding Learning Engagement with User-Centered Human-Computer Interaction in a Multimodal Online Learning Environment\",\"authors\":\"Jiahui Ma, Elizabeth A. Johnson, Bernadette McCrory\",\"doi\":\"10.1177/21695067231193675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimodal online learning environment improves learning experience through different modalities such as visual, auditory, and kinesthetic interactions. Multimodal learning analytics (MMLA) with multiple biosensors provides a way to overcome the challenge of analyzing the multiple interaction types simultaneously. Galvanic skin response/electrodermal activity (GSR/EDA), eye tracking and facial expression were used to measure the learning interaction in a multimodal online learning environment. iMotions and R software were used to post-process and analyze the time-synchronized biosensor data. GSR/EDA, eye tracking and facial expression showed real-time cognitive, emotional, and visual learning engagement for each interaction type. There is a tremendous potential for using MMLA with multiple biosensors to understand learning engagement in a multimodal online learning environment was shown in this study.\",\"PeriodicalId\":74544,\"journal\":{\"name\":\"Proceedings of the Human Factors and Ergonomics Society ... Annual Meeting. Human Factors and Ergonomics Society. Annual meeting\",\"volume\":\"63 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Human Factors and Ergonomics Society ... Annual Meeting. Human Factors and Ergonomics Society. Annual meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/21695067231193675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Human Factors and Ergonomics Society ... Annual Meeting. Human Factors and Ergonomics Society. Annual meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/21695067231193675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多模式在线学习环境通过视觉、听觉和动觉等不同模式的互动来改善学习体验。多模态学习分析(MMLA)提供了一种方法来克服同时分析多种交互类型的挑战。使用皮肤电反应/皮电活动(GSR/EDA)、眼动追踪和面部表情来测量多模式在线学习环境下的学习互动。使用imotion和R软件对时间同步生物传感器数据进行后处理和分析。GSR/EDA、眼动追踪和面部表情显示了每种互动类型的实时认知、情感和视觉学习参与。这项研究表明,在多模式在线学习环境中,使用MMLA和多个生物传感器来理解学习参与具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding Learning Engagement with User-Centered Human-Computer Interaction in a Multimodal Online Learning Environment
Multimodal online learning environment improves learning experience through different modalities such as visual, auditory, and kinesthetic interactions. Multimodal learning analytics (MMLA) with multiple biosensors provides a way to overcome the challenge of analyzing the multiple interaction types simultaneously. Galvanic skin response/electrodermal activity (GSR/EDA), eye tracking and facial expression were used to measure the learning interaction in a multimodal online learning environment. iMotions and R software were used to post-process and analyze the time-synchronized biosensor data. GSR/EDA, eye tracking and facial expression showed real-time cognitive, emotional, and visual learning engagement for each interaction type. There is a tremendous potential for using MMLA with multiple biosensors to understand learning engagement in a multimodal online learning environment was shown in this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Is vitamin A an antioxidant? Investigating Human Physiological Responses to Work-Related Stress Phishing in Social Media: Investigating Training Techniques on Instagram Shop Factor Analysis of a Generalized Video Game Experience Measure A Completion Rate Conundrum: Reducing bias in the Single Usability Metric
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1