Jiahui Ma, Elizabeth A. Johnson, Bernadette McCrory
{"title":"理解多模式在线学习环境中以用户为中心的人机交互的学习参与","authors":"Jiahui Ma, Elizabeth A. Johnson, Bernadette McCrory","doi":"10.1177/21695067231193675","DOIUrl":null,"url":null,"abstract":"Multimodal online learning environment improves learning experience through different modalities such as visual, auditory, and kinesthetic interactions. Multimodal learning analytics (MMLA) with multiple biosensors provides a way to overcome the challenge of analyzing the multiple interaction types simultaneously. Galvanic skin response/electrodermal activity (GSR/EDA), eye tracking and facial expression were used to measure the learning interaction in a multimodal online learning environment. iMotions and R software were used to post-process and analyze the time-synchronized biosensor data. GSR/EDA, eye tracking and facial expression showed real-time cognitive, emotional, and visual learning engagement for each interaction type. There is a tremendous potential for using MMLA with multiple biosensors to understand learning engagement in a multimodal online learning environment was shown in this study.","PeriodicalId":74544,"journal":{"name":"Proceedings of the Human Factors and Ergonomics Society ... Annual Meeting. Human Factors and Ergonomics Society. Annual meeting","volume":"63 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding Learning Engagement with User-Centered Human-Computer Interaction in a Multimodal Online Learning Environment\",\"authors\":\"Jiahui Ma, Elizabeth A. Johnson, Bernadette McCrory\",\"doi\":\"10.1177/21695067231193675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimodal online learning environment improves learning experience through different modalities such as visual, auditory, and kinesthetic interactions. Multimodal learning analytics (MMLA) with multiple biosensors provides a way to overcome the challenge of analyzing the multiple interaction types simultaneously. Galvanic skin response/electrodermal activity (GSR/EDA), eye tracking and facial expression were used to measure the learning interaction in a multimodal online learning environment. iMotions and R software were used to post-process and analyze the time-synchronized biosensor data. GSR/EDA, eye tracking and facial expression showed real-time cognitive, emotional, and visual learning engagement for each interaction type. There is a tremendous potential for using MMLA with multiple biosensors to understand learning engagement in a multimodal online learning environment was shown in this study.\",\"PeriodicalId\":74544,\"journal\":{\"name\":\"Proceedings of the Human Factors and Ergonomics Society ... Annual Meeting. Human Factors and Ergonomics Society. Annual meeting\",\"volume\":\"63 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Human Factors and Ergonomics Society ... Annual Meeting. Human Factors and Ergonomics Society. Annual meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/21695067231193675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Human Factors and Ergonomics Society ... Annual Meeting. Human Factors and Ergonomics Society. Annual meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/21695067231193675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Understanding Learning Engagement with User-Centered Human-Computer Interaction in a Multimodal Online Learning Environment
Multimodal online learning environment improves learning experience through different modalities such as visual, auditory, and kinesthetic interactions. Multimodal learning analytics (MMLA) with multiple biosensors provides a way to overcome the challenge of analyzing the multiple interaction types simultaneously. Galvanic skin response/electrodermal activity (GSR/EDA), eye tracking and facial expression were used to measure the learning interaction in a multimodal online learning environment. iMotions and R software were used to post-process and analyze the time-synchronized biosensor data. GSR/EDA, eye tracking and facial expression showed real-time cognitive, emotional, and visual learning engagement for each interaction type. There is a tremendous potential for using MMLA with multiple biosensors to understand learning engagement in a multimodal online learning environment was shown in this study.