{"title":"用堆积模型预测河湾最大冲刷深度","authors":"Junfeng Chen, Xiaoquan Zhou, Lirong Xiao, Yuhang Huang","doi":"10.2166/hydro.2023.177","DOIUrl":null,"url":null,"abstract":"Abstract The accurate prediction of maximum erosion depth in riverbeds is crucial for early protection of bank slopes. In this study, K-means clustering analysis was used for outlier identification and feature selection, resulting in Plan 1 with six influential features. Plan 2 included features selected by existing methods. Regression models were built using Support Vector Regression, Random Forest Regression (RF Regression), and eXtreme Gradient Boosting on sample data from Plan 1 and Plan 2. To enhance accuracy, a Stacking method with a feed-forward neural network was introduced as the meta-learner. Model performance was evaluated using root mean squared error, mean absolute error, mean absolute percentage error, and R2 coefficients. The results demonstrate that the performance of the three models in Plan 1 outperformed that of Plan 2, with improvements in R2 values of 0.0025, 0.0423, and 0.0205, respectively. Among the three regression models in Plan 1, RF Regression performs the best with an R2 value of 0.9149 but still lower than the 0.9389 achieved by the Stacking fusion model. Compared to the existing formulas, the Stacking model exhibits superior predictive performance. This study verifies the effectiveness of combining clustering analysis, feature selection, and the Stacking method in predicting maximum scour depth in bends, providing a novel approach for bank protection design.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of maximum scour depth in river bends by the Stacking model\",\"authors\":\"Junfeng Chen, Xiaoquan Zhou, Lirong Xiao, Yuhang Huang\",\"doi\":\"10.2166/hydro.2023.177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The accurate prediction of maximum erosion depth in riverbeds is crucial for early protection of bank slopes. In this study, K-means clustering analysis was used for outlier identification and feature selection, resulting in Plan 1 with six influential features. Plan 2 included features selected by existing methods. Regression models were built using Support Vector Regression, Random Forest Regression (RF Regression), and eXtreme Gradient Boosting on sample data from Plan 1 and Plan 2. To enhance accuracy, a Stacking method with a feed-forward neural network was introduced as the meta-learner. Model performance was evaluated using root mean squared error, mean absolute error, mean absolute percentage error, and R2 coefficients. The results demonstrate that the performance of the three models in Plan 1 outperformed that of Plan 2, with improvements in R2 values of 0.0025, 0.0423, and 0.0205, respectively. Among the three regression models in Plan 1, RF Regression performs the best with an R2 value of 0.9149 but still lower than the 0.9389 achieved by the Stacking fusion model. Compared to the existing formulas, the Stacking model exhibits superior predictive performance. This study verifies the effectiveness of combining clustering analysis, feature selection, and the Stacking method in predicting maximum scour depth in bends, providing a novel approach for bank protection design.\",\"PeriodicalId\":54801,\"journal\":{\"name\":\"Journal of Hydroinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydroinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/hydro.2023.177\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/hydro.2023.177","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Prediction of maximum scour depth in river bends by the Stacking model
Abstract The accurate prediction of maximum erosion depth in riverbeds is crucial for early protection of bank slopes. In this study, K-means clustering analysis was used for outlier identification and feature selection, resulting in Plan 1 with six influential features. Plan 2 included features selected by existing methods. Regression models were built using Support Vector Regression, Random Forest Regression (RF Regression), and eXtreme Gradient Boosting on sample data from Plan 1 and Plan 2. To enhance accuracy, a Stacking method with a feed-forward neural network was introduced as the meta-learner. Model performance was evaluated using root mean squared error, mean absolute error, mean absolute percentage error, and R2 coefficients. The results demonstrate that the performance of the three models in Plan 1 outperformed that of Plan 2, with improvements in R2 values of 0.0025, 0.0423, and 0.0205, respectively. Among the three regression models in Plan 1, RF Regression performs the best with an R2 value of 0.9149 but still lower than the 0.9389 achieved by the Stacking fusion model. Compared to the existing formulas, the Stacking model exhibits superior predictive performance. This study verifies the effectiveness of combining clustering analysis, feature selection, and the Stacking method in predicting maximum scour depth in bends, providing a novel approach for bank protection design.
期刊介绍:
Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.