Neutronic计算的VVER-1000 MOX核心计算基准使用OpenMC代码

Md Imtiaj Hossain, Abdus Sattar Mollah, Yasmin Akter, Mehraz Zaman Fardin
{"title":"Neutronic计算的VVER-1000 MOX核心计算基准使用OpenMC代码","authors":"Md Imtiaj Hossain, Abdus Sattar Mollah, Yasmin Akter, Mehraz Zaman Fardin","doi":"10.3897/nucet.9.91090","DOIUrl":null,"url":null,"abstract":"The goal of this study is to perform neutronic calculations of the VVER-1000 MOX core computational benchmarks with an OpenMC code along with ENDF/B-VII.1 nuclear data library. The results of neutronic analysis using the OpenMC Monte Carlo code for the VVER-1000 MOX core, containing 30% mixed oxide fuel with low enriched uranium fuel, are presented in this study. As per the benchmark report, all six states are considered in the present study. The k eff values, assembly average fission reaction rates, and pin-by-pin fission rates were calculated as per benchmark criteria. In addition, 2D thermal and fast neutron-flux distribution were also generated. The reactivity results and neutron flux distribution were compared with other results in which benchmark analysis was performed using the same core geometry and it showed great similarity with slight deviation. This shows that the modeling of the VVER-1000 MOX core was done successfully using OpenMC. Because OpenMC was successfully used for neutronics calculation of the VVER-1000 whole core, it may be mentioned here that OpenMC code can also be utilized for neutronics and other reactor core physics analyses of the VVER-1200 reactor which is to be commissioned in Bangladesh in the upcoming year.","PeriodicalId":100969,"journal":{"name":"Nuclear Energy and Technology","volume":"117 30","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neutronic calculations for the VVER-1000 MOX core computational benchmark using the OpenMC code\",\"authors\":\"Md Imtiaj Hossain, Abdus Sattar Mollah, Yasmin Akter, Mehraz Zaman Fardin\",\"doi\":\"10.3897/nucet.9.91090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this study is to perform neutronic calculations of the VVER-1000 MOX core computational benchmarks with an OpenMC code along with ENDF/B-VII.1 nuclear data library. The results of neutronic analysis using the OpenMC Monte Carlo code for the VVER-1000 MOX core, containing 30% mixed oxide fuel with low enriched uranium fuel, are presented in this study. As per the benchmark report, all six states are considered in the present study. The k eff values, assembly average fission reaction rates, and pin-by-pin fission rates were calculated as per benchmark criteria. In addition, 2D thermal and fast neutron-flux distribution were also generated. The reactivity results and neutron flux distribution were compared with other results in which benchmark analysis was performed using the same core geometry and it showed great similarity with slight deviation. This shows that the modeling of the VVER-1000 MOX core was done successfully using OpenMC. Because OpenMC was successfully used for neutronics calculation of the VVER-1000 whole core, it may be mentioned here that OpenMC code can also be utilized for neutronics and other reactor core physics analyses of the VVER-1200 reactor which is to be commissioned in Bangladesh in the upcoming year.\",\"PeriodicalId\":100969,\"journal\":{\"name\":\"Nuclear Energy and Technology\",\"volume\":\"117 30\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Energy and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3897/nucet.9.91090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Energy and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/nucet.9.91090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目标是使用OpenMC代码和ENDF/B-VII对VVER-1000 MOX核心计算基准进行中子计算。1 .核数据库。本文介绍了用OpenMC蒙特卡罗程序对含有30%低浓铀混合氧化物燃料的VVER-1000 MOX堆芯进行中子分析的结果。根据基准报告,本研究考虑了所有六个州。keff值、装配平均裂变反应速率和针间裂变速率按基准标准计算。此外,还生成了二维热中子通量和快中子通量分布。将反应性结果和中子通量分布与采用相同堆芯几何形状进行基准分析的其他结果进行比较,结果相似度高,偏差小。这表明使用OpenMC对VVER-1000 MOX内核进行了成功的建模。由于OpenMC已经成功地用于VVER-1000整个堆芯的中子计算,这里可以提到,OpenMC代码也可以用于即将在孟加拉国投入使用的VVER-1200堆芯的中子和其他堆芯物理分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neutronic calculations for the VVER-1000 MOX core computational benchmark using the OpenMC code
The goal of this study is to perform neutronic calculations of the VVER-1000 MOX core computational benchmarks with an OpenMC code along with ENDF/B-VII.1 nuclear data library. The results of neutronic analysis using the OpenMC Monte Carlo code for the VVER-1000 MOX core, containing 30% mixed oxide fuel with low enriched uranium fuel, are presented in this study. As per the benchmark report, all six states are considered in the present study. The k eff values, assembly average fission reaction rates, and pin-by-pin fission rates were calculated as per benchmark criteria. In addition, 2D thermal and fast neutron-flux distribution were also generated. The reactivity results and neutron flux distribution were compared with other results in which benchmark analysis was performed using the same core geometry and it showed great similarity with slight deviation. This shows that the modeling of the VVER-1000 MOX core was done successfully using OpenMC. Because OpenMC was successfully used for neutronics calculation of the VVER-1000 whole core, it may be mentioned here that OpenMC code can also be utilized for neutronics and other reactor core physics analyses of the VVER-1200 reactor which is to be commissioned in Bangladesh in the upcoming year.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
期刊最新文献
Potential role of nuclear power in a carbon-free world Corrosion resistance of chromium coating on the inner surface of EP823-Sh steel cladding A brief investigation of the dose field virtual simulation tools for reactor decommissioning and preliminary design for the HWRR reactor in China Assessment of the possibility for large-scale 238Pu production in a VVER-1000 power reactor A computer code for optimizing the neutronics model parameters based on results of reactor physics experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1