{"title":"关于GMM推理:部分辨识、辨识强度和非标准渐近","authors":"Donald S. Poskitt","doi":"10.1017/s0266466623000221","DOIUrl":null,"url":null,"abstract":"This paper analyses aspects of generalized method of moments (GMM) inference in moment equality models in settings where standard regularity conditions may break down. Explicit analytic formulations for the asymptotic distributions of estimable functions of the GMM estimator and statistics based on the GMM criterion function are derived under relatively mild assumptions. The moment Jacobian is allowed to be rank deficient, so first order identification may fail, the values of the Jacobian singular values are not constrained, thereby allowing for varying levels of identification strength, the long-run variance of the moment conditions can be singular, and the GMM criterion function weighting matrix may also be chosen sub-optimally. The large-sample properties are derived without imposing a specific structure on the functional form of the moment conditions. Closed-form expressions for the distributions are presented that can be evaluated using standard software without recourse to bootstrap or simulation methods. The practical operation of the results is illustrated via examples involving instrumental variables estimation of a structural equation with endogenous regressors and a common CH features model.","PeriodicalId":49275,"journal":{"name":"Econometric Theory","volume":"214 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON GMM INFERENCE: PARTIAL IDENTIFICATION, IDENTIFICATION STRENGTH, AND NONSTANDARD ASYMPTOTICS\",\"authors\":\"Donald S. Poskitt\",\"doi\":\"10.1017/s0266466623000221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyses aspects of generalized method of moments (GMM) inference in moment equality models in settings where standard regularity conditions may break down. Explicit analytic formulations for the asymptotic distributions of estimable functions of the GMM estimator and statistics based on the GMM criterion function are derived under relatively mild assumptions. The moment Jacobian is allowed to be rank deficient, so first order identification may fail, the values of the Jacobian singular values are not constrained, thereby allowing for varying levels of identification strength, the long-run variance of the moment conditions can be singular, and the GMM criterion function weighting matrix may also be chosen sub-optimally. The large-sample properties are derived without imposing a specific structure on the functional form of the moment conditions. Closed-form expressions for the distributions are presented that can be evaluated using standard software without recourse to bootstrap or simulation methods. The practical operation of the results is illustrated via examples involving instrumental variables estimation of a structural equation with endogenous regressors and a common CH features model.\",\"PeriodicalId\":49275,\"journal\":{\"name\":\"Econometric Theory\",\"volume\":\"214 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0266466623000221\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0266466623000221","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
ON GMM INFERENCE: PARTIAL IDENTIFICATION, IDENTIFICATION STRENGTH, AND NONSTANDARD ASYMPTOTICS
This paper analyses aspects of generalized method of moments (GMM) inference in moment equality models in settings where standard regularity conditions may break down. Explicit analytic formulations for the asymptotic distributions of estimable functions of the GMM estimator and statistics based on the GMM criterion function are derived under relatively mild assumptions. The moment Jacobian is allowed to be rank deficient, so first order identification may fail, the values of the Jacobian singular values are not constrained, thereby allowing for varying levels of identification strength, the long-run variance of the moment conditions can be singular, and the GMM criterion function weighting matrix may also be chosen sub-optimally. The large-sample properties are derived without imposing a specific structure on the functional form of the moment conditions. Closed-form expressions for the distributions are presented that can be evaluated using standard software without recourse to bootstrap or simulation methods. The practical operation of the results is illustrated via examples involving instrumental variables estimation of a structural equation with endogenous regressors and a common CH features model.
Econometric TheoryMATHEMATICS, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
1.90
自引率
0.00%
发文量
52
审稿时长
>12 weeks
期刊介绍:
Since its inception, Econometric Theory has aimed to endow econometrics with an innovative journal dedicated to advance theoretical research in econometrics. It provides a centralized professional outlet for original theoretical contributions in all of the major areas of econometrics, and all fields of research in econometric theory fall within the scope of ET. In addition, ET fosters the multidisciplinary features of econometrics that extend beyond economics. Particularly welcome are articles that promote original econometric research in relation to mathematical finance, stochastic processes, statistics, and probability theory, as well as computationally intensive areas of economics such as modern industrial organization and dynamic macroeconomics.