仿生分支结构地震超材料:衰减低频瑞利波

Yongtao Bai, Xiaolei Li, Yiwen Liao
{"title":"仿生分支结构地震超材料:衰减低频瑞利波","authors":"Yongtao Bai, Xiaolei Li, Yiwen Liao","doi":"10.1088/1361-6463/ad0b54","DOIUrl":null,"url":null,"abstract":"Abstract This study investigates the transmission characteristics of natural forests with branches and introduces a bio-inspired branch structure seismic metamaterial designed to create bandgaps for low-frequency Rayleigh waves. Employing the finite element method, we reveal the mechanism behind the generation of these Rayleigh wave bandgaps and their transmission properties. A distinct 'collectivization mode' within the bio-inspired branch structure seismic metamaterial is identified, effectively attenuating Rayleigh waves. A collectivization coefficient is introduced for quantitative characterization, and we extend the analysis to multi-layered soil mediums, demonstrating an interface with the metamaterial's bandgaps. Frequency-domain analysis highlights the difference between using the collectivization mode and traditional methods for attenuating surface waves, offering a novel approach to low-frequency Rayleigh wave reduction with implications in seismology and related fields.","PeriodicalId":16833,"journal":{"name":"Journal of Physics D","volume":" 16","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bio-inspired branch structure seismic metamaterial: attenuating low-frequency Rayleigh waves\",\"authors\":\"Yongtao Bai, Xiaolei Li, Yiwen Liao\",\"doi\":\"10.1088/1361-6463/ad0b54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study investigates the transmission characteristics of natural forests with branches and introduces a bio-inspired branch structure seismic metamaterial designed to create bandgaps for low-frequency Rayleigh waves. Employing the finite element method, we reveal the mechanism behind the generation of these Rayleigh wave bandgaps and their transmission properties. A distinct 'collectivization mode' within the bio-inspired branch structure seismic metamaterial is identified, effectively attenuating Rayleigh waves. A collectivization coefficient is introduced for quantitative characterization, and we extend the analysis to multi-layered soil mediums, demonstrating an interface with the metamaterial's bandgaps. Frequency-domain analysis highlights the difference between using the collectivization mode and traditional methods for attenuating surface waves, offering a novel approach to low-frequency Rayleigh wave reduction with implications in seismology and related fields.\",\"PeriodicalId\":16833,\"journal\":{\"name\":\"Journal of Physics D\",\"volume\":\" 16\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/ad0b54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad0b54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本文研究了具有分支的天然林的传输特性,并介绍了一种仿生分支结构地震超材料,该材料设计用于制造低频瑞利波的带隙。利用有限元方法,揭示了这些瑞利波带隙产生的机理及其传输特性。在仿生分支结构地震超材料中发现了一种独特的“集体化模式”,有效地衰减了瑞利波。引入集体化系数进行定量表征,并将分析扩展到多层土壤介质,展示了与超材料带隙的界面。频域分析强调了使用集体化模式与传统表面波衰减方法的区别,为低频瑞利波衰减提供了一种新的方法,在地震学和相关领域具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bio-inspired branch structure seismic metamaterial: attenuating low-frequency Rayleigh waves
Abstract This study investigates the transmission characteristics of natural forests with branches and introduces a bio-inspired branch structure seismic metamaterial designed to create bandgaps for low-frequency Rayleigh waves. Employing the finite element method, we reveal the mechanism behind the generation of these Rayleigh wave bandgaps and their transmission properties. A distinct 'collectivization mode' within the bio-inspired branch structure seismic metamaterial is identified, effectively attenuating Rayleigh waves. A collectivization coefficient is introduced for quantitative characterization, and we extend the analysis to multi-layered soil mediums, demonstrating an interface with the metamaterial's bandgaps. Frequency-domain analysis highlights the difference between using the collectivization mode and traditional methods for attenuating surface waves, offering a novel approach to low-frequency Rayleigh wave reduction with implications in seismology and related fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The study of N-polar GaN/InAlN MOS-HEMT and T-gate HEMT biosensors Magnetic levitation of nanoscale materials: the critical role of effective density Ammonia Cracking for Hydrogen Production using a Microwave Argon Plasma Jet UV irradiation assisted low-temperature process for thin film transistor performance improvement of praseodymium-doped indium zinc oxide Dynamic Mode Decomposition for data-driven analysis and reduced-order modelling of E×B plasmas: I. Extraction of spatiotemporally coherent patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1