基于机器学习的炼铁高炉自动化回归模型

Ricardo A. Calix, Orlando Ugarte, Tyamo Okosun, Hong Wang
{"title":"基于机器学习的炼铁高炉自动化回归模型","authors":"Ricardo A. Calix, Orlando Ugarte, Tyamo Okosun, Hong Wang","doi":"10.3390/dynamics3040034","DOIUrl":null,"url":null,"abstract":"Computational fluid dynamics (CFD)-based simulation has been the traditional way to model complex industrial systems and processes. One very large and complex industrial system that has benefited from CFD-based simulations is the steel blast furnace system. The problem with the CFD-based simulation approach is that it tends to be very slow for generating data. The CFD-only approach may not be fast enough for use in real-time decisionmaking. To address this issue, in this work, the authors propose the use of machine learning techniques to train and test models based on data generated via CFD simulation. Regression models based on neural networks are compared with tree-boosting models. In particular, several areas (tuyere, raceway, and shaft) of the blast furnace are modeled using these approaches. The results of the model training and testing are presented and discussed. The obtained R2 metrics are, in general, very high. The results appear promising and may help to improve the efficiency of operator and process engineer decisionmaking when running a blast furnace.","PeriodicalId":80276,"journal":{"name":"Dynamics (Pembroke, Ont.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Based Regression Models for Ironmaking Blast Furnace Automation\",\"authors\":\"Ricardo A. Calix, Orlando Ugarte, Tyamo Okosun, Hong Wang\",\"doi\":\"10.3390/dynamics3040034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational fluid dynamics (CFD)-based simulation has been the traditional way to model complex industrial systems and processes. One very large and complex industrial system that has benefited from CFD-based simulations is the steel blast furnace system. The problem with the CFD-based simulation approach is that it tends to be very slow for generating data. The CFD-only approach may not be fast enough for use in real-time decisionmaking. To address this issue, in this work, the authors propose the use of machine learning techniques to train and test models based on data generated via CFD simulation. Regression models based on neural networks are compared with tree-boosting models. In particular, several areas (tuyere, raceway, and shaft) of the blast furnace are modeled using these approaches. The results of the model training and testing are presented and discussed. The obtained R2 metrics are, in general, very high. The results appear promising and may help to improve the efficiency of operator and process engineer decisionmaking when running a blast furnace.\",\"PeriodicalId\":80276,\"journal\":{\"name\":\"Dynamics (Pembroke, Ont.)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics (Pembroke, Ont.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/dynamics3040034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics (Pembroke, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dynamics3040034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于计算流体动力学(CFD)的仿真一直是复杂工业系统和过程建模的传统方法。一个非常庞大和复杂的工业系统受益于基于cfd的模拟是钢铁高炉系统。基于cfd的模拟方法的问题在于它生成数据的速度非常慢。仅使用差价合约的方法可能不够快,无法用于实时决策。为了解决这个问题,在这项工作中,作者建议使用机器学习技术来训练和测试基于CFD模拟生成的数据的模型。将基于神经网络的回归模型与树助推模型进行了比较。特别地,用这些方法对高炉的几个区域(风口、滚道和轴)进行了建模。给出了模型训练和测试的结果并进行了讨论。通常,得到的R2度量是非常高的。研究结果对提高高炉运行时操作人员和工艺工程师的决策效率具有一定的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning-Based Regression Models for Ironmaking Blast Furnace Automation
Computational fluid dynamics (CFD)-based simulation has been the traditional way to model complex industrial systems and processes. One very large and complex industrial system that has benefited from CFD-based simulations is the steel blast furnace system. The problem with the CFD-based simulation approach is that it tends to be very slow for generating data. The CFD-only approach may not be fast enough for use in real-time decisionmaking. To address this issue, in this work, the authors propose the use of machine learning techniques to train and test models based on data generated via CFD simulation. Regression models based on neural networks are compared with tree-boosting models. In particular, several areas (tuyere, raceway, and shaft) of the blast furnace are modeled using these approaches. The results of the model training and testing are presented and discussed. The obtained R2 metrics are, in general, very high. The results appear promising and may help to improve the efficiency of operator and process engineer decisionmaking when running a blast furnace.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring Transition from Stability to Chaos through Random Matrices Robust Global Trends during Pandemics: Analysing the Interplay of Biological and Social Processes Unveiling Dynamical Symmetries in 2D Chaotic Iterative Maps with Ordinal-Patterns-Based Complexity Quantifiers Thermal Hydraulics Simulation of a Water Spray System for a Cooling Fluid Catalytic Cracking (FCC) Regenerator Investigation of Jamming Phenomenon in a Direct Reduction Furnace Pellet Feed System Using the Discrete Element Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1