Jie Zhang, Xinghao Wang, Jinyou Hou, Yan Guo, Qinggang Xie
{"title":"一种基于忆阻器的多涡超混沌电路设计及其在图像加密中的应用","authors":"Jie Zhang, Xinghao Wang, Jinyou Hou, Yan Guo, Qinggang Xie","doi":"10.1142/s0218126624501007","DOIUrl":null,"url":null,"abstract":"This paper proposes a new four-dimensional hyper-chaotic system capable of generating multi-wing chaotic attractors by introducing active magnetron memristors, multi-segmented square functions and trigonometric functions. The dynamical properties of this new hyper-chaotic system, such as equilibrium point, dissipation, Lyapunov exponential spectrum, bifurcation diagram and Poincaré cross-section and attraction basin, are analyzed theoretically and simulated numerically, and the complexity of this system with different parameters is analyzed. It is observed that this hyper-chaotic system has periodic, chaotic and hyper-chaotic variations with an infinite number of equilibria and coexisting attractors under different parameter conditions. The circuit simulation was performed using Multisim and the results obtained were consistent with the numerical analysis of the dynamics, and the chaotic circuit system is designed by FPGA to verify the realizability of the system. Finally, an image encryption algorithm is designed in conjunction with the DNA algorithm to enable a new system chaotic sequence for image encryption. The results show that the hyper-chaotic system has rich dynamical behavior and has high-security performance when applied to image encryption with strong chaotic key and plaintext sensitivity and large key space in image encryption.","PeriodicalId":54866,"journal":{"name":"Journal of Circuits Systems and Computers","volume":"206 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel memristor-based multi-vortex hyperchaotic circuit design and its application in image encryption\",\"authors\":\"Jie Zhang, Xinghao Wang, Jinyou Hou, Yan Guo, Qinggang Xie\",\"doi\":\"10.1142/s0218126624501007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new four-dimensional hyper-chaotic system capable of generating multi-wing chaotic attractors by introducing active magnetron memristors, multi-segmented square functions and trigonometric functions. The dynamical properties of this new hyper-chaotic system, such as equilibrium point, dissipation, Lyapunov exponential spectrum, bifurcation diagram and Poincaré cross-section and attraction basin, are analyzed theoretically and simulated numerically, and the complexity of this system with different parameters is analyzed. It is observed that this hyper-chaotic system has periodic, chaotic and hyper-chaotic variations with an infinite number of equilibria and coexisting attractors under different parameter conditions. The circuit simulation was performed using Multisim and the results obtained were consistent with the numerical analysis of the dynamics, and the chaotic circuit system is designed by FPGA to verify the realizability of the system. Finally, an image encryption algorithm is designed in conjunction with the DNA algorithm to enable a new system chaotic sequence for image encryption. The results show that the hyper-chaotic system has rich dynamical behavior and has high-security performance when applied to image encryption with strong chaotic key and plaintext sensitivity and large key space in image encryption.\",\"PeriodicalId\":54866,\"journal\":{\"name\":\"Journal of Circuits Systems and Computers\",\"volume\":\"206 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Circuits Systems and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218126624501007\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Circuits Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218126624501007","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A novel memristor-based multi-vortex hyperchaotic circuit design and its application in image encryption
This paper proposes a new four-dimensional hyper-chaotic system capable of generating multi-wing chaotic attractors by introducing active magnetron memristors, multi-segmented square functions and trigonometric functions. The dynamical properties of this new hyper-chaotic system, such as equilibrium point, dissipation, Lyapunov exponential spectrum, bifurcation diagram and Poincaré cross-section and attraction basin, are analyzed theoretically and simulated numerically, and the complexity of this system with different parameters is analyzed. It is observed that this hyper-chaotic system has periodic, chaotic and hyper-chaotic variations with an infinite number of equilibria and coexisting attractors under different parameter conditions. The circuit simulation was performed using Multisim and the results obtained were consistent with the numerical analysis of the dynamics, and the chaotic circuit system is designed by FPGA to verify the realizability of the system. Finally, an image encryption algorithm is designed in conjunction with the DNA algorithm to enable a new system chaotic sequence for image encryption. The results show that the hyper-chaotic system has rich dynamical behavior and has high-security performance when applied to image encryption with strong chaotic key and plaintext sensitivity and large key space in image encryption.
期刊介绍:
Journal of Circuits, Systems, and Computers covers a wide scope, ranging from mathematical foundations to practical engineering design in the general areas of circuits, systems, and computers with focus on their circuit aspects. Although primary emphasis will be on research papers, survey, expository and tutorial papers are also welcome. The journal consists of two sections:
Papers - Contributions in this section may be of a research or tutorial nature. Research papers must be original and must not duplicate descriptions or derivations available elsewhere. The author should limit paper length whenever this can be done without impairing quality.
Letters - This section provides a vehicle for speedy publication of new results and information of current interest in circuits, systems, and computers. Focus will be directed to practical design- and applications-oriented contributions, but publication in this section will not be restricted to this material. These letters are to concentrate on reporting the results obtained, their significance and the conclusions, while including only the minimum of supporting details required to understand the contribution. Publication of a manuscript in this manner does not preclude a later publication with a fully developed version.