在熔模铸造技术中提高陶瓷模具敲出性能的研究

IF 0.6 Q4 METALLURGY & METALLURGICAL ENGINEERING Archives of Foundry Engineering Pub Date : 2023-11-08 DOI:10.24425/afe.2023.146676
{"title":"在熔模铸造技术中提高陶瓷模具敲出性能的研究","authors":"","doi":"10.24425/afe.2023.146676","DOIUrl":null,"url":null,"abstract":"In lost wax technology, self-supporting ceramic moulds are made, which must have adequate strength after being filled with liquid metal. The final structural strength is determined by such factors as the thickness of the individual layers applied to the wax model resulting from the viscosity of the liquid mass, the specific strength of the layers formed, and the heat treatment of the moulds. The development of technology and materials is moving in the direction of increasing the specific strength of self-supporting ceramic moulds. The consequence of this is that the final strength of these moulds is too high, making it difficult to knock castings out of the moulds. Removing mould remnants from holes, closed spaces of the casting, corners, sharp edges, variable cross sections and etc. is cumbersome. In order to remove mould remnants from the casting, a method is used to dissolve them in heated solutions of suitable chemical composition and reaction. The paper presents the results of research on a new solution, the essence of which is the production of layers in a ceramic mould, in the middle zone of the mould, characterized by a significantly reduced final strength, achieved after firing. These layers are produced using a different liquid ceramic mass than the base one, based on an organic binder. As a result, thanks to the embedded layer, very good knock-out of castings is achieved and separation of residual ceramic mass. Special layers can be incorporated over the entire surface or only in those places where the bonding of the casting surface and ceramic mass occurs.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"64 1‐2","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigations Concerning Improvements of the Knock Out Property of Ceramic Moulds Applied in the Investment Casting Technology\",\"authors\":\"\",\"doi\":\"10.24425/afe.2023.146676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In lost wax technology, self-supporting ceramic moulds are made, which must have adequate strength after being filled with liquid metal. The final structural strength is determined by such factors as the thickness of the individual layers applied to the wax model resulting from the viscosity of the liquid mass, the specific strength of the layers formed, and the heat treatment of the moulds. The development of technology and materials is moving in the direction of increasing the specific strength of self-supporting ceramic moulds. The consequence of this is that the final strength of these moulds is too high, making it difficult to knock castings out of the moulds. Removing mould remnants from holes, closed spaces of the casting, corners, sharp edges, variable cross sections and etc. is cumbersome. In order to remove mould remnants from the casting, a method is used to dissolve them in heated solutions of suitable chemical composition and reaction. The paper presents the results of research on a new solution, the essence of which is the production of layers in a ceramic mould, in the middle zone of the mould, characterized by a significantly reduced final strength, achieved after firing. These layers are produced using a different liquid ceramic mass than the base one, based on an organic binder. As a result, thanks to the embedded layer, very good knock-out of castings is achieved and separation of residual ceramic mass. Special layers can be incorporated over the entire surface or only in those places where the bonding of the casting surface and ceramic mass occurs.\",\"PeriodicalId\":8301,\"journal\":{\"name\":\"Archives of Foundry Engineering\",\"volume\":\"64 1‐2\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Foundry Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/afe.2023.146676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Foundry Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/afe.2023.146676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigations Concerning Improvements of the Knock Out Property of Ceramic Moulds Applied in the Investment Casting Technology
In lost wax technology, self-supporting ceramic moulds are made, which must have adequate strength after being filled with liquid metal. The final structural strength is determined by such factors as the thickness of the individual layers applied to the wax model resulting from the viscosity of the liquid mass, the specific strength of the layers formed, and the heat treatment of the moulds. The development of technology and materials is moving in the direction of increasing the specific strength of self-supporting ceramic moulds. The consequence of this is that the final strength of these moulds is too high, making it difficult to knock castings out of the moulds. Removing mould remnants from holes, closed spaces of the casting, corners, sharp edges, variable cross sections and etc. is cumbersome. In order to remove mould remnants from the casting, a method is used to dissolve them in heated solutions of suitable chemical composition and reaction. The paper presents the results of research on a new solution, the essence of which is the production of layers in a ceramic mould, in the middle zone of the mould, characterized by a significantly reduced final strength, achieved after firing. These layers are produced using a different liquid ceramic mass than the base one, based on an organic binder. As a result, thanks to the embedded layer, very good knock-out of castings is achieved and separation of residual ceramic mass. Special layers can be incorporated over the entire surface or only in those places where the bonding of the casting surface and ceramic mass occurs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Foundry Engineering
Archives of Foundry Engineering METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.10
自引率
16.70%
发文量
0
期刊介绍: Thematic scope includes scientific issues of foundry industry: Theoretical Aspects of Casting Processes, Innovative Foundry Technologies and Materials, Foundry Processes Computer Aiding, Mechanization, Automation and Robotics in Foundry, Transport Systems in Foundry, Castings Quality Management, Environmental Protection. Why subscribe and read
期刊最新文献
Evaluation of the Possibility to Improve the Scratch Resistance of the AZ91 Alloy by Applying a Coating Changes in the Microstructure and Abrasion Resistance of Tool Cast Steel after the Formation of Titanium Carbides in the Alloy Matrix The Influence of Pearlite Present in the Microstructure of GX120MnCr13 Cast Steel on Wear Resistance Microstructure and Properties of Experimental Mg-9Al-5RE-1Zn-Mn Magnesium Alloy The Influence of the Casting Process on Shaping the Primary Structure of Mg-Li Alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1