调查IPTV恶意软件

IF 2.8 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Future Internet Pub Date : 2023-09-28 DOI:10.3390/fi15100325
Adam Lockett, Ioannis Chalkias, Cagatay Yucel, Jane Henriksen-Bulmer, Vasilis Katos
{"title":"调查IPTV恶意软件","authors":"Adam Lockett, Ioannis Chalkias, Cagatay Yucel, Jane Henriksen-Bulmer, Vasilis Katos","doi":"10.3390/fi15100325","DOIUrl":null,"url":null,"abstract":"Technologies providing copyright-infringing IPTV content are commonly used as an illegal alternative to legal IPTV subscriptions and services, as they usually have lower monetary costs and can be more convenient for users who follow content from different sources. These infringing IPTV technologies may include websites, software, software add-ons, and physical set-top boxes. Due to the free or low cost of illegal IPTV technologies, illicit IPTV content providers will often resort to intrusive advertising, scams, and the distribution of malware to increase their revenue. We developed an automated solution for collecting and analysing malware from illegal IPTV technologies and used it to analyse a sample of illicit IPTV websites, application (app) stores, and software. Our results show that our IPTV Technologies Malware Analysis Framework (IITMAF) classified 32 of the 60 sample URLs tested as malicious compared to running the same test using publicly available online antivirus solutions, which only detected 23 of the 60 sample URLs as malicious. Moreover, the IITMAF also detected malicious URLs and files from 31 of the sample’s websites, one of which had reported ransomware behaviour.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"1 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating IPTV Malware in the Wild\",\"authors\":\"Adam Lockett, Ioannis Chalkias, Cagatay Yucel, Jane Henriksen-Bulmer, Vasilis Katos\",\"doi\":\"10.3390/fi15100325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technologies providing copyright-infringing IPTV content are commonly used as an illegal alternative to legal IPTV subscriptions and services, as they usually have lower monetary costs and can be more convenient for users who follow content from different sources. These infringing IPTV technologies may include websites, software, software add-ons, and physical set-top boxes. Due to the free or low cost of illegal IPTV technologies, illicit IPTV content providers will often resort to intrusive advertising, scams, and the distribution of malware to increase their revenue. We developed an automated solution for collecting and analysing malware from illegal IPTV technologies and used it to analyse a sample of illicit IPTV websites, application (app) stores, and software. Our results show that our IPTV Technologies Malware Analysis Framework (IITMAF) classified 32 of the 60 sample URLs tested as malicious compared to running the same test using publicly available online antivirus solutions, which only detected 23 of the 60 sample URLs as malicious. Moreover, the IITMAF also detected malicious URLs and files from 31 of the sample’s websites, one of which had reported ransomware behaviour.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi15100325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi15100325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

提供侵犯版权的IPTV内容的技术通常被用作合法IPTV订阅和服务的非法替代品,因为它们通常具有较低的货币成本,并且对于从不同来源关注内容的用户来说更方便。这些侵权的IPTV技术可能包括网站、软件、软件附加组件和物理机顶盒。由于非法IPTV技术的免费或低成本,非法IPTV内容提供商通常会诉诸侵入性广告,诈骗和恶意软件的分发来增加他们的收入。我们开发了一个自动解决方案,用于收集和分析来自非法IPTV技术的恶意软件,并使用它来分析非法IPTV网站,应用程序(应用程序)商店和软件的样本。我们的结果显示,我们的IPTV Technologies恶意软件分析框架(IITMAF)将测试的60个样本url中的32个分类为恶意,而使用公开可用的在线反病毒解决方案运行相同的测试,后者仅检测到60个样本url中的23个为恶意。此外,IITMAF还从31个样本网站中检测到恶意url和文件,其中一个网站报告了勒索软件行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating IPTV Malware in the Wild
Technologies providing copyright-infringing IPTV content are commonly used as an illegal alternative to legal IPTV subscriptions and services, as they usually have lower monetary costs and can be more convenient for users who follow content from different sources. These infringing IPTV technologies may include websites, software, software add-ons, and physical set-top boxes. Due to the free or low cost of illegal IPTV technologies, illicit IPTV content providers will often resort to intrusive advertising, scams, and the distribution of malware to increase their revenue. We developed an automated solution for collecting and analysing malware from illegal IPTV technologies and used it to analyse a sample of illicit IPTV websites, application (app) stores, and software. Our results show that our IPTV Technologies Malware Analysis Framework (IITMAF) classified 32 of the 60 sample URLs tested as malicious compared to running the same test using publicly available online antivirus solutions, which only detected 23 of the 60 sample URLs as malicious. Moreover, the IITMAF also detected malicious URLs and files from 31 of the sample’s websites, one of which had reported ransomware behaviour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Future Internet
Future Internet Computer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍: Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.
期刊最新文献
Controllable Queuing System with Elastic Traffic and Signals for Resource Capacity Planning in 5G Network Slicing Internet-of-Things Traffic Analysis and Device Identification Based on Two-Stage Clustering in Smart Home Environments Resource Indexing and Querying in Large Connected Environments An Analysis of Methods and Metrics for Task Scheduling in Fog Computing Evaluating Embeddings from Pre-Trained Language Models and Knowledge Graphs for Educational Content Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1