Albert T. Anastasio, Anthony N. Baumann, Andrew Fiorentino, Katelyn Sidloski, Kempland C. Walley, Aditya Muralidharan, Keegan T. Conry, Jacob C. Hoffmann
{"title":"非连续前路颈椎椎间盘切除术和融合术、颈椎椎间盘置换术和混合颈椎手术的运动学和生物力学:系统综述","authors":"Albert T. Anastasio, Anthony N. Baumann, Andrew Fiorentino, Katelyn Sidloski, Kempland C. Walley, Aditya Muralidharan, Keegan T. Conry, Jacob C. Hoffmann","doi":"10.3390/biomechanics3040036","DOIUrl":null,"url":null,"abstract":"Cervical disc degenerative disease (CDDD) is a common spinal pathology that is often treated with anterior cervical discectomy and fusion (ACDF), cervical disc arthroplasty (CDA), and/or hybrid cervical surgery (HCS). The purpose of this first-time systematic review is to examine the biomechanical outcomes associated with three types of non-contiguous cervical surgeries—ACDF, CDA, and HCS—to provide a greater understanding of non-contiguous cervical surgical biomechanics. A systematic review was performed using PubMed, Cumulated Index to Nursing and Allied Health Literature (CINAHL), MEDLINE, and Web of Science from database inception until June 6th, 2023. The inclusion criteria was any article that reported biomechanical or kinematic outcomes, outcomes for any of the three non-contiguous cervical surgeries, and human-derived and/or human cadaver subjects. A total of 5 biomechanical articles were included from a total of 523 articles. Non-contiguous two-level HCS experienced less drastic range-of-motion (ROM) changes throughout the cervical spine and decreased intervertebral disc pressure (IDP) compared to non-contiguous two-level ACDF. Non-contiguous two-level CDA resulted in more cervical ROM and less non-operative segment facet contact force compared to non-contiguous two level ACDF. There was less cephalad and caudal non-operative segment ROM in non-contiguous two-level ACDF compared to contiguous three-level ACDF.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Kinematics and Biomechanics for Non-Contiguous Anterior Cervical Discectomy and Fusion, Cervical Disc Arthroplasty, and Hybrid Cervical Surgery: A Systematic Review\",\"authors\":\"Albert T. Anastasio, Anthony N. Baumann, Andrew Fiorentino, Katelyn Sidloski, Kempland C. Walley, Aditya Muralidharan, Keegan T. Conry, Jacob C. Hoffmann\",\"doi\":\"10.3390/biomechanics3040036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cervical disc degenerative disease (CDDD) is a common spinal pathology that is often treated with anterior cervical discectomy and fusion (ACDF), cervical disc arthroplasty (CDA), and/or hybrid cervical surgery (HCS). The purpose of this first-time systematic review is to examine the biomechanical outcomes associated with three types of non-contiguous cervical surgeries—ACDF, CDA, and HCS—to provide a greater understanding of non-contiguous cervical surgical biomechanics. A systematic review was performed using PubMed, Cumulated Index to Nursing and Allied Health Literature (CINAHL), MEDLINE, and Web of Science from database inception until June 6th, 2023. The inclusion criteria was any article that reported biomechanical or kinematic outcomes, outcomes for any of the three non-contiguous cervical surgeries, and human-derived and/or human cadaver subjects. A total of 5 biomechanical articles were included from a total of 523 articles. Non-contiguous two-level HCS experienced less drastic range-of-motion (ROM) changes throughout the cervical spine and decreased intervertebral disc pressure (IDP) compared to non-contiguous two-level ACDF. Non-contiguous two-level CDA resulted in more cervical ROM and less non-operative segment facet contact force compared to non-contiguous two level ACDF. There was less cephalad and caudal non-operative segment ROM in non-contiguous two-level ACDF compared to contiguous three-level ACDF.\",\"PeriodicalId\":72381,\"journal\":{\"name\":\"Biomechanics (Basel, Switzerland)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomechanics (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/biomechanics3040036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biomechanics3040036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
颈椎间盘退行性疾病(CDDD)是一种常见的脊柱病理,通常通过颈前路椎间盘切除术和融合术(ACDF)、颈椎间盘置换术(CDA)和/或混合颈椎手术(HCS)进行治疗。本文首次系统回顾的目的是研究三种非连续颈椎手术(acdf、CDA和hcs)的生物力学结果,以更好地了解非连续颈椎手术的生物力学。使用PubMed、护理和相关健康文献累积索引(CINAHL)、MEDLINE和Web of Science从数据库建立到2023年6月6日进行系统评价。纳入标准是任何报道了生物力学或运动学结果、三次非连续颈椎手术中的任何一次结果以及人源性和/或人尸体受试者的文章。从523篇文献中共纳入5篇生物力学文献。与非连续两节段ACDF相比,非连续两节段HCS在整个颈椎的活动范围(ROM)变化较小,椎间盘压力(IDP)降低。与非连续二节段ACDF相比,非连续二节段CDA导致更多的颈椎ROM和更小的非手术节段小关节面接触力。与连续三节段ACDF相比,非连续二节段ACDF的头侧和尾侧非手术节段ROM较少。
The Kinematics and Biomechanics for Non-Contiguous Anterior Cervical Discectomy and Fusion, Cervical Disc Arthroplasty, and Hybrid Cervical Surgery: A Systematic Review
Cervical disc degenerative disease (CDDD) is a common spinal pathology that is often treated with anterior cervical discectomy and fusion (ACDF), cervical disc arthroplasty (CDA), and/or hybrid cervical surgery (HCS). The purpose of this first-time systematic review is to examine the biomechanical outcomes associated with three types of non-contiguous cervical surgeries—ACDF, CDA, and HCS—to provide a greater understanding of non-contiguous cervical surgical biomechanics. A systematic review was performed using PubMed, Cumulated Index to Nursing and Allied Health Literature (CINAHL), MEDLINE, and Web of Science from database inception until June 6th, 2023. The inclusion criteria was any article that reported biomechanical or kinematic outcomes, outcomes for any of the three non-contiguous cervical surgeries, and human-derived and/or human cadaver subjects. A total of 5 biomechanical articles were included from a total of 523 articles. Non-contiguous two-level HCS experienced less drastic range-of-motion (ROM) changes throughout the cervical spine and decreased intervertebral disc pressure (IDP) compared to non-contiguous two-level ACDF. Non-contiguous two-level CDA resulted in more cervical ROM and less non-operative segment facet contact force compared to non-contiguous two level ACDF. There was less cephalad and caudal non-operative segment ROM in non-contiguous two-level ACDF compared to contiguous three-level ACDF.