斯托克斯过程:使用物理信息高斯过程推断斯托克斯流

IF 6.3 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine Learning Science and Technology Pub Date : 2023-10-20 DOI:10.1088/2632-2153/ad0286
John J. Jairo Molina, Kenta Ogawa, Takashi Taniguchi
{"title":"斯托克斯过程:使用物理信息高斯过程推断斯托克斯流","authors":"John J. Jairo Molina, Kenta Ogawa, Takashi Taniguchi","doi":"10.1088/2632-2153/ad0286","DOIUrl":null,"url":null,"abstract":"Abstract We develop a probabilistic Stokes flow framework, using physics informed Gaussian processes, which can be used to solve both forward/inverse flow problems with missing and/or noisy data. The physics of the problem, specified by the Stokes and continuity equations, is exactly encoded into the inference framework. Crucially, this means that we do not need to explicitly solve the Poisson equation for the pressure field, as a physically meaningful (divergence-free) velocity field will automatically be selected. We test our method on a simple pressure driven flow problem, i.e. flow through a sinusoidal channel, and compare against standard numerical methods (Finite Element and Direct Numerical Simulations). We obtain excellent agreement, even when solving inverse problems given only sub-sampled velocity data on low dimensional sub-spaces (i.e. 1 component of the velocity on 1 D domains to reconstruct 2 D flows). The proposed method will be a valuable tool for analyzing experimental data, where noisy/missing data is the norm.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"53 6","pages":"0"},"PeriodicalIF":6.3000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stokesian Processes : Inferring Stokes Flows using Physics-Informed Gaussian Processes\",\"authors\":\"John J. Jairo Molina, Kenta Ogawa, Takashi Taniguchi\",\"doi\":\"10.1088/2632-2153/ad0286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We develop a probabilistic Stokes flow framework, using physics informed Gaussian processes, which can be used to solve both forward/inverse flow problems with missing and/or noisy data. The physics of the problem, specified by the Stokes and continuity equations, is exactly encoded into the inference framework. Crucially, this means that we do not need to explicitly solve the Poisson equation for the pressure field, as a physically meaningful (divergence-free) velocity field will automatically be selected. We test our method on a simple pressure driven flow problem, i.e. flow through a sinusoidal channel, and compare against standard numerical methods (Finite Element and Direct Numerical Simulations). We obtain excellent agreement, even when solving inverse problems given only sub-sampled velocity data on low dimensional sub-spaces (i.e. 1 component of the velocity on 1 D domains to reconstruct 2 D flows). The proposed method will be a valuable tool for analyzing experimental data, where noisy/missing data is the norm.\",\"PeriodicalId\":33757,\"journal\":{\"name\":\"Machine Learning Science and Technology\",\"volume\":\"53 6\",\"pages\":\"0\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ad0286\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad0286","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

我们开发了一个概率Stokes流框架,使用物理通知高斯过程,可用于解决丢失和/或噪声数据的正/逆流动问题。这个问题的物理性质,由斯托克斯方程和连续性方程指定,被精确地编码到推理框架中。至关重要的是,这意味着我们不需要显式地求解压力场的泊松方程,因为将自动选择物理上有意义的(无散度)速度场。我们在一个简单的压力驱动流动问题上测试了我们的方法,即通过正弦通道的流动,并与标准数值方法(有限元和直接数值模拟)进行了比较。即使在求解逆问题时只给出低维子空间上的次采样速度数据(即一维域上速度的一个分量来重建二维流),我们也获得了很好的一致性。所提出的方法将是分析实验数据的一个有价值的工具,其中噪声/缺失数据是常态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stokesian Processes : Inferring Stokes Flows using Physics-Informed Gaussian Processes
Abstract We develop a probabilistic Stokes flow framework, using physics informed Gaussian processes, which can be used to solve both forward/inverse flow problems with missing and/or noisy data. The physics of the problem, specified by the Stokes and continuity equations, is exactly encoded into the inference framework. Crucially, this means that we do not need to explicitly solve the Poisson equation for the pressure field, as a physically meaningful (divergence-free) velocity field will automatically be selected. We test our method on a simple pressure driven flow problem, i.e. flow through a sinusoidal channel, and compare against standard numerical methods (Finite Element and Direct Numerical Simulations). We obtain excellent agreement, even when solving inverse problems given only sub-sampled velocity data on low dimensional sub-spaces (i.e. 1 component of the velocity on 1 D domains to reconstruct 2 D flows). The proposed method will be a valuable tool for analyzing experimental data, where noisy/missing data is the norm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Learning Science and Technology
Machine Learning Science and Technology Computer Science-Artificial Intelligence
CiteScore
9.10
自引率
4.40%
发文量
86
审稿时长
5 weeks
期刊介绍: Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.
期刊最新文献
Quality assurance for online adaptive radiotherapy: a secondary dose verification model with geometry-encoded U-Net. Optimizing ZX-diagrams with deep reinforcement learning DiffLense: a conditional diffusion model for super-resolution of gravitational lensing data Equivariant tensor network potentials Masked particle modeling on sets: towards self-supervised high energy physics foundation models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1