{"title":"用于三相并网光伏发电系统的有源开关电容/开关电感准z源多电平逆变器扩展拓扑(ASC/SL-QZSI): SPBO-RBFNN控制方案","authors":"D. Saravanakumar, K. Deeba","doi":"10.1142/s0218126624501111","DOIUrl":null,"url":null,"abstract":"In this paper, the controller modelling and design for the Active Switched Capacitor/Switched Inductor Quasi-Z-Source with Multilevel Inverter (ASC/SL-QZSI) related three-phase grid-tied photovoltaic (PV) power system is proposed. The ASC/SL-QZSI control method consists of two phases: these are assessed with the use of the proposed effective controller. The proposed control system is the hybridization of the Student Psychology-Based Optimization (SPBO) and the Radial Basis Function Neural Network (RBFNN), hence it is named SPBO–RBFNN control scheme. The ASC/SL-QZS offers greater boost capability, uses fewer passive components, like inductors and capacitors, and reduces the voltage stress across main inverter switching devices. The expandability of this topology is another advantage. Extra cells can simply be cascaded at the network’s impedance if a higher boost rate is required by adding an inductor and three diodes. In the proposed control scheme, SPBO is developed for determining the total PV voltages. The input PV reference voltages and gain parameters of the SPBO are created as output for optimal tuning of the Proportional Integral (PI) controller. RBFNN is trained with offline process and it is used to extract the reference currents of the grid, and the output of RBFNN is provided with SPBO. It delivers the corresponding tuning parameters to accomplish the grid current. With this proper control, the input power is reduced and the current, voltage and frequency conditions of DC-link are regulated. Finally, the performance of the QZS-CMI is executed in MATLAB and the performance is compared with existing methods.","PeriodicalId":54866,"journal":{"name":"Journal of Circuits Systems and Computers","volume":"77 2","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Extended Topology Named Active Switched Capacitor/Switched Inductor Quasi Z-Source with Multilevel Inverter (ASC/SL-QZSI) for Three-Phase Grid-Tie PV Power System: A SPBO-RBFNN Control Scheme\",\"authors\":\"D. Saravanakumar, K. Deeba\",\"doi\":\"10.1142/s0218126624501111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the controller modelling and design for the Active Switched Capacitor/Switched Inductor Quasi-Z-Source with Multilevel Inverter (ASC/SL-QZSI) related three-phase grid-tied photovoltaic (PV) power system is proposed. The ASC/SL-QZSI control method consists of two phases: these are assessed with the use of the proposed effective controller. The proposed control system is the hybridization of the Student Psychology-Based Optimization (SPBO) and the Radial Basis Function Neural Network (RBFNN), hence it is named SPBO–RBFNN control scheme. The ASC/SL-QZS offers greater boost capability, uses fewer passive components, like inductors and capacitors, and reduces the voltage stress across main inverter switching devices. The expandability of this topology is another advantage. Extra cells can simply be cascaded at the network’s impedance if a higher boost rate is required by adding an inductor and three diodes. In the proposed control scheme, SPBO is developed for determining the total PV voltages. The input PV reference voltages and gain parameters of the SPBO are created as output for optimal tuning of the Proportional Integral (PI) controller. RBFNN is trained with offline process and it is used to extract the reference currents of the grid, and the output of RBFNN is provided with SPBO. It delivers the corresponding tuning parameters to accomplish the grid current. With this proper control, the input power is reduced and the current, voltage and frequency conditions of DC-link are regulated. Finally, the performance of the QZS-CMI is executed in MATLAB and the performance is compared with existing methods.\",\"PeriodicalId\":54866,\"journal\":{\"name\":\"Journal of Circuits Systems and Computers\",\"volume\":\"77 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Circuits Systems and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218126624501111\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Circuits Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218126624501111","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
An Extended Topology Named Active Switched Capacitor/Switched Inductor Quasi Z-Source with Multilevel Inverter (ASC/SL-QZSI) for Three-Phase Grid-Tie PV Power System: A SPBO-RBFNN Control Scheme
In this paper, the controller modelling and design for the Active Switched Capacitor/Switched Inductor Quasi-Z-Source with Multilevel Inverter (ASC/SL-QZSI) related three-phase grid-tied photovoltaic (PV) power system is proposed. The ASC/SL-QZSI control method consists of two phases: these are assessed with the use of the proposed effective controller. The proposed control system is the hybridization of the Student Psychology-Based Optimization (SPBO) and the Radial Basis Function Neural Network (RBFNN), hence it is named SPBO–RBFNN control scheme. The ASC/SL-QZS offers greater boost capability, uses fewer passive components, like inductors and capacitors, and reduces the voltage stress across main inverter switching devices. The expandability of this topology is another advantage. Extra cells can simply be cascaded at the network’s impedance if a higher boost rate is required by adding an inductor and three diodes. In the proposed control scheme, SPBO is developed for determining the total PV voltages. The input PV reference voltages and gain parameters of the SPBO are created as output for optimal tuning of the Proportional Integral (PI) controller. RBFNN is trained with offline process and it is used to extract the reference currents of the grid, and the output of RBFNN is provided with SPBO. It delivers the corresponding tuning parameters to accomplish the grid current. With this proper control, the input power is reduced and the current, voltage and frequency conditions of DC-link are regulated. Finally, the performance of the QZS-CMI is executed in MATLAB and the performance is compared with existing methods.
期刊介绍:
Journal of Circuits, Systems, and Computers covers a wide scope, ranging from mathematical foundations to practical engineering design in the general areas of circuits, systems, and computers with focus on their circuit aspects. Although primary emphasis will be on research papers, survey, expository and tutorial papers are also welcome. The journal consists of two sections:
Papers - Contributions in this section may be of a research or tutorial nature. Research papers must be original and must not duplicate descriptions or derivations available elsewhere. The author should limit paper length whenever this can be done without impairing quality.
Letters - This section provides a vehicle for speedy publication of new results and information of current interest in circuits, systems, and computers. Focus will be directed to practical design- and applications-oriented contributions, but publication in this section will not be restricted to this material. These letters are to concentrate on reporting the results obtained, their significance and the conclusions, while including only the minimum of supporting details required to understand the contribution. Publication of a manuscript in this manner does not preclude a later publication with a fully developed version.