非均相光氧化微生物灭活:一种有前途的海水生物安全技术?

Cécile Blanchon , Ève Toulza , Christophe Calvayrac , Gaël Plantard
{"title":"非均相光氧化微生物灭活:一种有前途的海水生物安全技术?","authors":"Cécile Blanchon ,&nbsp;Ève Toulza ,&nbsp;Christophe Calvayrac ,&nbsp;Gaël Plantard","doi":"10.1016/j.nxsust.2023.100003","DOIUrl":null,"url":null,"abstract":"<div><p>This review is aimed at the actions of radical oxygen species (ROS) produced during the photocatalysis reaction on the different biomolecules composing the microorganisms, as well as the presentation and development of the key operational parameters influencing the efficiency of the photocatalytic treatment in the context of saltwater applications. Our study focuses on the case of heterogeneous photocatalysis, one of the advanced oxidation processes (AOP). This work highlights the importance of the analytical composition of the water (pH, salt, dissolved organic matter.) on the catalyst/target interactions. Similarly, the structural composition of microorganisms (cell wall biomolecules) also plays a key role in the sensitivity to the photocatalysis process, and to a lesser extent, their metabolism also has an impact on their resistance. Another important point of our work is that it highlights the fact that to date, there is no standardization in the way results from the literature are reported, making it extremely difficult to compare data for the purpose of evaluating different processes. Finally, our work underlines that photocatalysis is particularly promising for bio-securing applications like the decontamination of seawater in aquaculture via the treatment of tanks and closed aquariums, as well as for the shipping industry via the treatment of ballast water.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294982362300003X/pdfft?md5=0a82dbc72622374be9ca46a374abf8c9&pid=1-s2.0-S294982362300003X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous photo-oxidation in microbial inactivation: A promising technology for seawater bio-securing?\",\"authors\":\"Cécile Blanchon ,&nbsp;Ève Toulza ,&nbsp;Christophe Calvayrac ,&nbsp;Gaël Plantard\",\"doi\":\"10.1016/j.nxsust.2023.100003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This review is aimed at the actions of radical oxygen species (ROS) produced during the photocatalysis reaction on the different biomolecules composing the microorganisms, as well as the presentation and development of the key operational parameters influencing the efficiency of the photocatalytic treatment in the context of saltwater applications. Our study focuses on the case of heterogeneous photocatalysis, one of the advanced oxidation processes (AOP). This work highlights the importance of the analytical composition of the water (pH, salt, dissolved organic matter.) on the catalyst/target interactions. Similarly, the structural composition of microorganisms (cell wall biomolecules) also plays a key role in the sensitivity to the photocatalysis process, and to a lesser extent, their metabolism also has an impact on their resistance. Another important point of our work is that it highlights the fact that to date, there is no standardization in the way results from the literature are reported, making it extremely difficult to compare data for the purpose of evaluating different processes. Finally, our work underlines that photocatalysis is particularly promising for bio-securing applications like the decontamination of seawater in aquaculture via the treatment of tanks and closed aquariums, as well as for the shipping industry via the treatment of ballast water.</p></div>\",\"PeriodicalId\":100960,\"journal\":{\"name\":\"Next Sustainability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S294982362300003X/pdfft?md5=0a82dbc72622374be9ca46a374abf8c9&pid=1-s2.0-S294982362300003X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S294982362300003X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294982362300003X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了光催化反应中产生的自由基氧(ROS)对组成微生物的不同生物分子的作用,以及影响光催化处理效率的关键操作参数的提出和发展。我们的研究集中在多相光催化的情况下,一个高级氧化过程(AOP)。这项工作强调了水的分析组成(pH,盐,溶解的有机物)对催化剂/靶相互作用的重要性。同样,微生物的结构组成(细胞壁生物分子)对光催化过程的敏感性也起着关键作用,其代谢也在较小程度上影响其抗性。我们工作的另一个重点是,它强调了这样一个事实,即迄今为止,文献报告结果的方式没有标准化,这使得为了评估不同过程而比较数据变得极其困难。最后,我们的工作强调,光催化在生物安全应用方面特别有前景,例如通过处理水箱和封闭水族馆对水产养殖中的海水进行净化,以及通过处理压载水对航运业进行净化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heterogeneous photo-oxidation in microbial inactivation: A promising technology for seawater bio-securing?

This review is aimed at the actions of radical oxygen species (ROS) produced during the photocatalysis reaction on the different biomolecules composing the microorganisms, as well as the presentation and development of the key operational parameters influencing the efficiency of the photocatalytic treatment in the context of saltwater applications. Our study focuses on the case of heterogeneous photocatalysis, one of the advanced oxidation processes (AOP). This work highlights the importance of the analytical composition of the water (pH, salt, dissolved organic matter.) on the catalyst/target interactions. Similarly, the structural composition of microorganisms (cell wall biomolecules) also plays a key role in the sensitivity to the photocatalysis process, and to a lesser extent, their metabolism also has an impact on their resistance. Another important point of our work is that it highlights the fact that to date, there is no standardization in the way results from the literature are reported, making it extremely difficult to compare data for the purpose of evaluating different processes. Finally, our work underlines that photocatalysis is particularly promising for bio-securing applications like the decontamination of seawater in aquaculture via the treatment of tanks and closed aquariums, as well as for the shipping industry via the treatment of ballast water.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Review of starch-based coagulants for water treatment: Mechanisms, extraction and surface modification Use of EDS/EDX to evaluate heavy metals pollution in water sources Incorporating industrial residue of submerged arc welding (SAW) in cement-based mortar matrices as a green strategy Copper-catalyzed plastic waste synthesized graphene nanosheets/polypyrrole nanocomposites for efficient thermoelectric applications BIM-based parametric energy analysis of green building components for the roofs and facades
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1