Thorsten Hansen, Erik Munktell, Georg Scheuerer, Qingyuan Zhuang, Kim Zwiener
{"title":"1.5级高功涡轮非定常流动CFD模拟","authors":"Thorsten Hansen, Erik Munktell, Georg Scheuerer, Qingyuan Zhuang, Kim Zwiener","doi":"10.1115/1.4063516","DOIUrl":null,"url":null,"abstract":"Abstract Behr et al. [1] have experimentally investigated the unsteady-state flow and clocking effects in a 1.5-stage high-work turbine. Their test rig had a first stator row with 36 blades, a 54-bladed rotor at 2,700 rpm, and a second stator row with 36 blades. They studied four different stator-clocking positions. The present paper computationally investigates the unsteady-state flow through the 1.5-stage turbine by performing CFD simulations with the Simcenter STAR-CCM+ software. The mathematical model of the simulations consisted of the ensemble-averaged unsteady-state mass, momentum and energy equations complemented by the SST turbulence model. The authors applied a quality assessment procedure to the computational results before comparing them to the experimental data. They reported the numerical accuracy using the Grid Convergence Index (GCI). The results showed an increase in the calculated efficiencies of the unsteady-state over the steady-state results, bringing data and simulations closer. The total pressure contours at the rotor and second stator exit planes also agreed well with the experiments. Finally, the paper includes simulations of the effects of different stator-clocking positions. The results showed a similar response to the change in stator-clocking position as the experiments.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFD SIMULATIONS OF THE UNSTEADY-STATE FLOW THROUGH A 1.5-STAGE HIGH-WORK TURBINE\",\"authors\":\"Thorsten Hansen, Erik Munktell, Georg Scheuerer, Qingyuan Zhuang, Kim Zwiener\",\"doi\":\"10.1115/1.4063516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Behr et al. [1] have experimentally investigated the unsteady-state flow and clocking effects in a 1.5-stage high-work turbine. Their test rig had a first stator row with 36 blades, a 54-bladed rotor at 2,700 rpm, and a second stator row with 36 blades. They studied four different stator-clocking positions. The present paper computationally investigates the unsteady-state flow through the 1.5-stage turbine by performing CFD simulations with the Simcenter STAR-CCM+ software. The mathematical model of the simulations consisted of the ensemble-averaged unsteady-state mass, momentum and energy equations complemented by the SST turbulence model. The authors applied a quality assessment procedure to the computational results before comparing them to the experimental data. They reported the numerical accuracy using the Grid Convergence Index (GCI). The results showed an increase in the calculated efficiencies of the unsteady-state over the steady-state results, bringing data and simulations closer. The total pressure contours at the rotor and second stator exit planes also agreed well with the experiments. Finally, the paper includes simulations of the effects of different stator-clocking positions. The results showed a similar response to the change in stator-clocking position as the experiments.\",\"PeriodicalId\":49966,\"journal\":{\"name\":\"Journal of Turbomachinery-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Turbomachinery-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063516\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbomachinery-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063516","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
CFD SIMULATIONS OF THE UNSTEADY-STATE FLOW THROUGH A 1.5-STAGE HIGH-WORK TURBINE
Abstract Behr et al. [1] have experimentally investigated the unsteady-state flow and clocking effects in a 1.5-stage high-work turbine. Their test rig had a first stator row with 36 blades, a 54-bladed rotor at 2,700 rpm, and a second stator row with 36 blades. They studied four different stator-clocking positions. The present paper computationally investigates the unsteady-state flow through the 1.5-stage turbine by performing CFD simulations with the Simcenter STAR-CCM+ software. The mathematical model of the simulations consisted of the ensemble-averaged unsteady-state mass, momentum and energy equations complemented by the SST turbulence model. The authors applied a quality assessment procedure to the computational results before comparing them to the experimental data. They reported the numerical accuracy using the Grid Convergence Index (GCI). The results showed an increase in the calculated efficiencies of the unsteady-state over the steady-state results, bringing data and simulations closer. The total pressure contours at the rotor and second stator exit planes also agreed well with the experiments. Finally, the paper includes simulations of the effects of different stator-clocking positions. The results showed a similar response to the change in stator-clocking position as the experiments.
期刊介绍:
The Journal of Turbomachinery publishes archival-quality, peer-reviewed technical papers that advance the state-of-the-art of turbomachinery technology related to gas turbine engines. The broad scope of the subject matter includes the fluid dynamics, heat transfer, and aeromechanics technology associated with the design, analysis, modeling, testing, and performance of turbomachinery. Emphasis is placed on gas-path technologies associated with axial compressors, centrifugal compressors, and turbines.
Topics: Aerodynamic design, analysis, and test of compressor and turbine blading; Compressor stall, surge, and operability issues; Heat transfer phenomena and film cooling design, analysis, and testing in turbines; Aeromechanical instabilities; Computational fluid dynamics (CFD) applied to turbomachinery, boundary layer development, measurement techniques, and cavity and leaking flows.