无机粘结剂桥梁热载荷破坏分析

IF 0.6 Q4 METALLURGY & METALLURGICAL ENGINEERING Archives of Foundry Engineering Pub Date : 2023-11-06 DOI:10.24425/afe.2019.127111
I. Vaskova, M. Conev
{"title":"无机粘结剂桥梁热载荷破坏分析","authors":"I. Vaskova, M. Conev","doi":"10.24425/afe.2019.127111","DOIUrl":null,"url":null,"abstract":"Recently, the use of inorganic binders cured by heat as a progressive technology for large scale production of cores is widely discussed topic in aluminium foundries. As practical experiences show, knock-out properties of inorganic binders were significantly increased, although they cannot overcome organic based binder systems. This paper contains information about hot curing processes based on alkali silicate and geopolymer binder systems for core making. Main differences between hot cured geopolymers and hot cured alkali silicate based inorganic binders are discussed. Theory of geopolymer binder states, that binder bridge destruction is mainly of adhesive character. The main aim of this research paper was to examine binder bridge destruction of alkali silicate and geopolymer binder systems. In order to fulfil this objective, sample parts were submitted to defined thermal load, broken and by using SEM analysis, binder bridge destruction mechanism was observed. Results showed that geopolymer binder system examined within this investigation does not have mainly adhesive destruction of binder bridges, however the ratio of adhesive-cohesive to cohesive destruction is higher than by use of alkali silicate based binder systems, therefore better knock-out properties can be expected.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Inorganic Binder Bridges Destruction after Thermal Load\",\"authors\":\"I. Vaskova, M. Conev\",\"doi\":\"10.24425/afe.2019.127111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the use of inorganic binders cured by heat as a progressive technology for large scale production of cores is widely discussed topic in aluminium foundries. As practical experiences show, knock-out properties of inorganic binders were significantly increased, although they cannot overcome organic based binder systems. This paper contains information about hot curing processes based on alkali silicate and geopolymer binder systems for core making. Main differences between hot cured geopolymers and hot cured alkali silicate based inorganic binders are discussed. Theory of geopolymer binder states, that binder bridge destruction is mainly of adhesive character. The main aim of this research paper was to examine binder bridge destruction of alkali silicate and geopolymer binder systems. In order to fulfil this objective, sample parts were submitted to defined thermal load, broken and by using SEM analysis, binder bridge destruction mechanism was observed. Results showed that geopolymer binder system examined within this investigation does not have mainly adhesive destruction of binder bridges, however the ratio of adhesive-cohesive to cohesive destruction is higher than by use of alkali silicate based binder systems, therefore better knock-out properties can be expected.\",\"PeriodicalId\":8301,\"journal\":{\"name\":\"Archives of Foundry Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Foundry Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/afe.2019.127111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Foundry Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/afe.2019.127111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of Inorganic Binder Bridges Destruction after Thermal Load
Recently, the use of inorganic binders cured by heat as a progressive technology for large scale production of cores is widely discussed topic in aluminium foundries. As practical experiences show, knock-out properties of inorganic binders were significantly increased, although they cannot overcome organic based binder systems. This paper contains information about hot curing processes based on alkali silicate and geopolymer binder systems for core making. Main differences between hot cured geopolymers and hot cured alkali silicate based inorganic binders are discussed. Theory of geopolymer binder states, that binder bridge destruction is mainly of adhesive character. The main aim of this research paper was to examine binder bridge destruction of alkali silicate and geopolymer binder systems. In order to fulfil this objective, sample parts were submitted to defined thermal load, broken and by using SEM analysis, binder bridge destruction mechanism was observed. Results showed that geopolymer binder system examined within this investigation does not have mainly adhesive destruction of binder bridges, however the ratio of adhesive-cohesive to cohesive destruction is higher than by use of alkali silicate based binder systems, therefore better knock-out properties can be expected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Foundry Engineering
Archives of Foundry Engineering METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.10
自引率
16.70%
发文量
0
期刊介绍: Thematic scope includes scientific issues of foundry industry: Theoretical Aspects of Casting Processes, Innovative Foundry Technologies and Materials, Foundry Processes Computer Aiding, Mechanization, Automation and Robotics in Foundry, Transport Systems in Foundry, Castings Quality Management, Environmental Protection. Why subscribe and read
期刊最新文献
Casting Production in Poland Versus European Trends in 21st Century Effect of Composition and Pouring Temperature of Cu-Sn on Fluidity and Mechanical Properties of Investment Casting Kinetic Model for the Decomposition Rate of the Binder in a Foundry Sand Application Abrasive Wear Resistance of Nodular Cast Iron After Selected Surface Heat and Thermochemical Treatment Processes Comparison of the Mechanical Properties of Ductile Cast Iron Intended for Gas Gate Valves with Nickel Cast Iron with an Austenitic Matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1