基于微调XGBoost算法的糖尿病检测机器学习方法

Aga Maulana, Farassa Rani Faisal, Teuku Rizky Noviandy, Tatsa Rizkia, Ghazi Mauer Idroes, Trina Ekawati Tallei, Mohamed El-Shazly, Rinaldi Idroes
{"title":"基于微调XGBoost算法的糖尿病检测机器学习方法","authors":"Aga Maulana, Farassa Rani Faisal, Teuku Rizky Noviandy, Tatsa Rizkia, Ghazi Mauer Idroes, Trina Ekawati Tallei, Mohamed El-Shazly, Rinaldi Idroes","doi":"10.60084/ijds.v1i1.72","DOIUrl":null,"url":null,"abstract":"Diabetes is a chronic condition characterized by elevated blood glucose levels which leads to organ dysfunction and an increased risk of premature death. The global prevalence of diabetes has been rising, necessitating an accurate and timely diagnosis to achieve the most effective management. Recent advancements in the field of machine learning have opened new possibilities for improving diabetes detection and management. In this study, we propose a fine-tuned XGBoost model for diabetes detection. We use the Pima Indian Diabetes dataset and employ a random search for hyperparameter tuning. The fine-tuned XGBoost model is compared with six other popular machine learning models and achieves the highest performance in accuracy, precision, sensitivity, and F1-score. This study demonstrates the potential of the fine-tuned XGBoost model as a robust and efficient tool for diabetes detection. The insights of this study advance medical diagnostics for efficient and personalized management of diabetes.","PeriodicalId":486036,"journal":{"name":"Infolitika Journal of Data Science","volume":"262 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Machine Learning Approach for Diabetes Detection Using Fine-Tuned XGBoost Algorithm\",\"authors\":\"Aga Maulana, Farassa Rani Faisal, Teuku Rizky Noviandy, Tatsa Rizkia, Ghazi Mauer Idroes, Trina Ekawati Tallei, Mohamed El-Shazly, Rinaldi Idroes\",\"doi\":\"10.60084/ijds.v1i1.72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes is a chronic condition characterized by elevated blood glucose levels which leads to organ dysfunction and an increased risk of premature death. The global prevalence of diabetes has been rising, necessitating an accurate and timely diagnosis to achieve the most effective management. Recent advancements in the field of machine learning have opened new possibilities for improving diabetes detection and management. In this study, we propose a fine-tuned XGBoost model for diabetes detection. We use the Pima Indian Diabetes dataset and employ a random search for hyperparameter tuning. The fine-tuned XGBoost model is compared with six other popular machine learning models and achieves the highest performance in accuracy, precision, sensitivity, and F1-score. This study demonstrates the potential of the fine-tuned XGBoost model as a robust and efficient tool for diabetes detection. The insights of this study advance medical diagnostics for efficient and personalized management of diabetes.\",\"PeriodicalId\":486036,\"journal\":{\"name\":\"Infolitika Journal of Data Science\",\"volume\":\"262 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infolitika Journal of Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.60084/ijds.v1i1.72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infolitika Journal of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.60084/ijds.v1i1.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

糖尿病是一种慢性疾病,其特征是血糖水平升高,导致器官功能障碍和过早死亡的风险增加。糖尿病的全球患病率一直在上升,需要准确和及时的诊断,以实现最有效的管理。机器学习领域的最新进展为改善糖尿病的检测和管理开辟了新的可能性。在这项研究中,我们提出了一个微调的XGBoost糖尿病检测模型。我们使用皮马印第安糖尿病数据集,并采用随机搜索超参数调优。经过微调的XGBoost模型与其他六种流行的机器学习模型进行了比较,在准确性、精密度、灵敏度和f1分数方面达到了最高的性能。这项研究证明了微调后的XGBoost模型作为一种强大而有效的糖尿病检测工具的潜力。这项研究的见解促进了医学诊断对糖尿病的有效和个性化管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Approach for Diabetes Detection Using Fine-Tuned XGBoost Algorithm
Diabetes is a chronic condition characterized by elevated blood glucose levels which leads to organ dysfunction and an increased risk of premature death. The global prevalence of diabetes has been rising, necessitating an accurate and timely diagnosis to achieve the most effective management. Recent advancements in the field of machine learning have opened new possibilities for improving diabetes detection and management. In this study, we propose a fine-tuned XGBoost model for diabetes detection. We use the Pima Indian Diabetes dataset and employ a random search for hyperparameter tuning. The fine-tuned XGBoost model is compared with six other popular machine learning models and achieves the highest performance in accuracy, precision, sensitivity, and F1-score. This study demonstrates the potential of the fine-tuned XGBoost model as a robust and efficient tool for diabetes detection. The insights of this study advance medical diagnostics for efficient and personalized management of diabetes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maternal and Child Healthcare Services in Aceh Province, Indonesia: A Correlation and Clustering Analysis in Statistics Ensemble Machine Learning Approach for Quantitative Structure Activity Relationship Based Drug Discovery: A Review Implementation of Hybrid CNN-XGBoost Method for Leukemia Detection Problem ANFIS-Based QSRR Modelling for Kovats Retention Index Prediction in Gas Chromatography Machine Learning Approach for Diabetes Detection Using Fine-Tuned XGBoost Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1