{"title":"带宽增强极化控制频率选择表面微波吸收器的设计","authors":"Gaurav Chaitanya, Paritosh Peshwe, Saptarshi Ghosh, Ashwin Kothari","doi":"10.1017/s1759078723001241","DOIUrl":null,"url":null,"abstract":"Abstract A design of a microwave absorber based on frequency selective surface resonating in X-band having ultrathin thickness, polarization controlled behavior, and increased absorption bandwidth has been reported. The reported absorber having its unit cell embodied of multiple resonating structures which includes conventional square, circular, and butterfly shaped resonators resulting in three absorption apexes at 9.44, 10.00, and 10.53 GHz (all in X band) with 99.9%, 99%, and 95.1% of absorptivity obtained at the frequencies of resonances. It demonstrates a wide full width at half maximum having 1.48 GHz as bandwidth, at the expense of using an ultrathin substrate of 0.0096 λ 0 , where λ 0 is the wavelength with respect to lowest resonating frequency, i.e. 9.44 GHz. The unit cell is fourfold symmetric exhibiting independence about the absorber’s polarity, as well as, it behaves stable over the outspread angle up to 45 degrees for both transverse magnetic and transverse electric polarized wave under sloped incident angle. The absorption behavior has been demonstrated by plotting the distribution of surface-currents and electric fields at the frequencies of resonance. The fabricated prototype of the presented design is tested at X-band and the obtained results concur with the simulated results.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"24 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of bandwidth-enhanced polarization controlled frequency selective surface based microwave absorber\",\"authors\":\"Gaurav Chaitanya, Paritosh Peshwe, Saptarshi Ghosh, Ashwin Kothari\",\"doi\":\"10.1017/s1759078723001241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A design of a microwave absorber based on frequency selective surface resonating in X-band having ultrathin thickness, polarization controlled behavior, and increased absorption bandwidth has been reported. The reported absorber having its unit cell embodied of multiple resonating structures which includes conventional square, circular, and butterfly shaped resonators resulting in three absorption apexes at 9.44, 10.00, and 10.53 GHz (all in X band) with 99.9%, 99%, and 95.1% of absorptivity obtained at the frequencies of resonances. It demonstrates a wide full width at half maximum having 1.48 GHz as bandwidth, at the expense of using an ultrathin substrate of 0.0096 λ 0 , where λ 0 is the wavelength with respect to lowest resonating frequency, i.e. 9.44 GHz. The unit cell is fourfold symmetric exhibiting independence about the absorber’s polarity, as well as, it behaves stable over the outspread angle up to 45 degrees for both transverse magnetic and transverse electric polarized wave under sloped incident angle. The absorption behavior has been demonstrated by plotting the distribution of surface-currents and electric fields at the frequencies of resonance. The fabricated prototype of the presented design is tested at X-band and the obtained results concur with the simulated results.\",\"PeriodicalId\":49052,\"journal\":{\"name\":\"International Journal of Microwave and Wireless Technologies\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Microwave and Wireless Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s1759078723001241\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave and Wireless Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1759078723001241","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design of bandwidth-enhanced polarization controlled frequency selective surface based microwave absorber
Abstract A design of a microwave absorber based on frequency selective surface resonating in X-band having ultrathin thickness, polarization controlled behavior, and increased absorption bandwidth has been reported. The reported absorber having its unit cell embodied of multiple resonating structures which includes conventional square, circular, and butterfly shaped resonators resulting in three absorption apexes at 9.44, 10.00, and 10.53 GHz (all in X band) with 99.9%, 99%, and 95.1% of absorptivity obtained at the frequencies of resonances. It demonstrates a wide full width at half maximum having 1.48 GHz as bandwidth, at the expense of using an ultrathin substrate of 0.0096 λ 0 , where λ 0 is the wavelength with respect to lowest resonating frequency, i.e. 9.44 GHz. The unit cell is fourfold symmetric exhibiting independence about the absorber’s polarity, as well as, it behaves stable over the outspread angle up to 45 degrees for both transverse magnetic and transverse electric polarized wave under sloped incident angle. The absorption behavior has been demonstrated by plotting the distribution of surface-currents and electric fields at the frequencies of resonance. The fabricated prototype of the presented design is tested at X-band and the obtained results concur with the simulated results.
期刊介绍:
The prime objective of the International Journal of Microwave and Wireless Technologies is to enhance the communication between microwave engineers throughout the world. It is therefore interdisciplinary and application oriented, providing a platform for the microwave industry. Coverage includes: applied electromagnetic field theory (antennas, transmission lines and waveguides), components (passive structures and semiconductor device technologies), analogue and mixed-signal circuits, systems, optical-microwave interactions, electromagnetic compatibility, industrial applications, biological effects and medical applications.