Breno Orzari, Nadezda Chernyavskaya, Raphael Cobe, Javier Mauricio Duarte, Jefferson Fialho, Dimitrios Gunopulos, Raghav Kansal, Maurizio Pierini, Thiago Tomei, Mary Touranakou
{"title":"使用归一化流的卷积变分自编码器生成LHC强子射流","authors":"Breno Orzari, Nadezda Chernyavskaya, Raphael Cobe, Javier Mauricio Duarte, Jefferson Fialho, Dimitrios Gunopulos, Raghav Kansal, Maurizio Pierini, Thiago Tomei, Mary Touranakou","doi":"10.1088/2632-2153/ad04ea","DOIUrl":null,"url":null,"abstract":"Abstract In high energy physics, one of the most important processes for collider data analysis is the comparison of collected and simulated data. Nowadays the state-of-the-art for data generation is in the form of Monte Carlo (MC) generators. However, because of the upcoming high-luminosity upgrade of the LHC, there will not be enough computational power or time to match the amount of needed simulated data using MC methods. An alternative approach under study is the usage of machine learning generative methods to fulfill that task. Since the most common final-state objects of high-energy proton collisions are hadronic jets, which are collections of particles collimated in a given region of space, this work aims to develop a convolutional variational autoencoder (ConVAE) for the generation of particle-based LHC hadronic jets. Given the ConVAE's limitations, a normalizing flow (NF) network is coupled to it in a two-step training process, which shows improvements on the results for the generated jets. The ConVAE+NF network is capable of generating a jet in 18.30 ± 0.04 μs, making it one of the fastest methods for this task up to now.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"62 1","pages":"0"},"PeriodicalIF":6.3000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LHC Hadronic Jet Generation Using Convolutional Variational Autoencoders with Normalizing Flows\",\"authors\":\"Breno Orzari, Nadezda Chernyavskaya, Raphael Cobe, Javier Mauricio Duarte, Jefferson Fialho, Dimitrios Gunopulos, Raghav Kansal, Maurizio Pierini, Thiago Tomei, Mary Touranakou\",\"doi\":\"10.1088/2632-2153/ad04ea\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In high energy physics, one of the most important processes for collider data analysis is the comparison of collected and simulated data. Nowadays the state-of-the-art for data generation is in the form of Monte Carlo (MC) generators. However, because of the upcoming high-luminosity upgrade of the LHC, there will not be enough computational power or time to match the amount of needed simulated data using MC methods. An alternative approach under study is the usage of machine learning generative methods to fulfill that task. Since the most common final-state objects of high-energy proton collisions are hadronic jets, which are collections of particles collimated in a given region of space, this work aims to develop a convolutional variational autoencoder (ConVAE) for the generation of particle-based LHC hadronic jets. Given the ConVAE's limitations, a normalizing flow (NF) network is coupled to it in a two-step training process, which shows improvements on the results for the generated jets. The ConVAE+NF network is capable of generating a jet in 18.30 ± 0.04 μs, making it one of the fastest methods for this task up to now.\",\"PeriodicalId\":33757,\"journal\":{\"name\":\"Machine Learning Science and Technology\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ad04ea\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad04ea","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
LHC Hadronic Jet Generation Using Convolutional Variational Autoencoders with Normalizing Flows
Abstract In high energy physics, one of the most important processes for collider data analysis is the comparison of collected and simulated data. Nowadays the state-of-the-art for data generation is in the form of Monte Carlo (MC) generators. However, because of the upcoming high-luminosity upgrade of the LHC, there will not be enough computational power or time to match the amount of needed simulated data using MC methods. An alternative approach under study is the usage of machine learning generative methods to fulfill that task. Since the most common final-state objects of high-energy proton collisions are hadronic jets, which are collections of particles collimated in a given region of space, this work aims to develop a convolutional variational autoencoder (ConVAE) for the generation of particle-based LHC hadronic jets. Given the ConVAE's limitations, a normalizing flow (NF) network is coupled to it in a two-step training process, which shows improvements on the results for the generated jets. The ConVAE+NF network is capable of generating a jet in 18.30 ± 0.04 μs, making it one of the fastest methods for this task up to now.
期刊介绍:
Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.