Jerome Aicart, Alexander Surrey, Lucas Champelovier, Kilian Henault, Chistian Geipel, Oliver Posdziech, Julie Mougin
{"title":"高温电解不同堆叠技术性能和耐久性的基准研究","authors":"Jerome Aicart, Alexander Surrey, Lucas Champelovier, Kilian Henault, Chistian Geipel, Oliver Posdziech, Julie Mougin","doi":"10.1002/fuce.202300028","DOIUrl":null,"url":null,"abstract":"Abstract In the current landscape of high temperature electrolysis, mainly two solid oxide cell (SOC) technologies are being used: electrolyte‐supported and cathode‐supported SOCs. The geometrical differences, namely the thickness of the electrolyte, can lead to vastly different operating temperatures. Since most phenomena affecting performance and durability remain thermally activated, comparing stack technologies can be a difficult endeavor at best. While the most visible goal of the European project MultiPLHY consists of Sunfire GmbH building the first multi‐megawatt solid oxide electrolyzer, a work package is being dedicated to stack testing in a laboratory environment. A harmonized protocol was first elaborated to allow comparing different stack technologies. It includes the recording of performance maps, several galvanostatic steps in thermoneutral conditions, as well as load point and thermal cycles. Subsequently, Sunfire operated a pile‐up of two 30‐cell electrolyte‐supported stacks for over 8200 h, while a 25‐cell cathode‐supported stack was tested at CEA for 6800 h. The present article aims at presenting the findings gathered during the implementation of the protocol. This benchmark study puts forward performance maps as well as voltage and stack temperature profiles over time, and discusses some of the difficulties inherent to long‐term testing.","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"27 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benchmark study of performances and durability between different stack technologies for high temperature electrolysis\",\"authors\":\"Jerome Aicart, Alexander Surrey, Lucas Champelovier, Kilian Henault, Chistian Geipel, Oliver Posdziech, Julie Mougin\",\"doi\":\"10.1002/fuce.202300028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the current landscape of high temperature electrolysis, mainly two solid oxide cell (SOC) technologies are being used: electrolyte‐supported and cathode‐supported SOCs. The geometrical differences, namely the thickness of the electrolyte, can lead to vastly different operating temperatures. Since most phenomena affecting performance and durability remain thermally activated, comparing stack technologies can be a difficult endeavor at best. While the most visible goal of the European project MultiPLHY consists of Sunfire GmbH building the first multi‐megawatt solid oxide electrolyzer, a work package is being dedicated to stack testing in a laboratory environment. A harmonized protocol was first elaborated to allow comparing different stack technologies. It includes the recording of performance maps, several galvanostatic steps in thermoneutral conditions, as well as load point and thermal cycles. Subsequently, Sunfire operated a pile‐up of two 30‐cell electrolyte‐supported stacks for over 8200 h, while a 25‐cell cathode‐supported stack was tested at CEA for 6800 h. The present article aims at presenting the findings gathered during the implementation of the protocol. This benchmark study puts forward performance maps as well as voltage and stack temperature profiles over time, and discusses some of the difficulties inherent to long‐term testing.\",\"PeriodicalId\":12566,\"journal\":{\"name\":\"Fuel Cells\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Cells\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/fuce.202300028\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/fuce.202300028","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Benchmark study of performances and durability between different stack technologies for high temperature electrolysis
Abstract In the current landscape of high temperature electrolysis, mainly two solid oxide cell (SOC) technologies are being used: electrolyte‐supported and cathode‐supported SOCs. The geometrical differences, namely the thickness of the electrolyte, can lead to vastly different operating temperatures. Since most phenomena affecting performance and durability remain thermally activated, comparing stack technologies can be a difficult endeavor at best. While the most visible goal of the European project MultiPLHY consists of Sunfire GmbH building the first multi‐megawatt solid oxide electrolyzer, a work package is being dedicated to stack testing in a laboratory environment. A harmonized protocol was first elaborated to allow comparing different stack technologies. It includes the recording of performance maps, several galvanostatic steps in thermoneutral conditions, as well as load point and thermal cycles. Subsequently, Sunfire operated a pile‐up of two 30‐cell electrolyte‐supported stacks for over 8200 h, while a 25‐cell cathode‐supported stack was tested at CEA for 6800 h. The present article aims at presenting the findings gathered during the implementation of the protocol. This benchmark study puts forward performance maps as well as voltage and stack temperature profiles over time, and discusses some of the difficulties inherent to long‐term testing.
期刊介绍:
This journal is only available online from 2011 onwards.
Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables.
Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in
-chemistry-
materials science-
physics-
chemical engineering-
electrical engineering-
mechanical engineering-
is included.
Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies.
Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology.
Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.