基于正交试验和数值模拟的弯曲溢洪道粗条消能器影响参数研究

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Hydroinformatics Pub Date : 2023-09-13 DOI:10.2166/hydro.2023.201
Honghong Zhang, Zhenwei Mu, Yiyun Wang, Zhen Zhou, Fan Fan, Fanqi Li, Hao Ma
{"title":"基于正交试验和数值模拟的弯曲溢洪道粗条消能器影响参数研究","authors":"Honghong Zhang, Zhenwei Mu, Yiyun Wang, Zhen Zhou, Fan Fan, Fanqi Li, Hao Ma","doi":"10.2166/hydro.2023.201","DOIUrl":null,"url":null,"abstract":"Abstract Rough-strip energy dissipators (R-SEDs) can be arranged at the bend bottom of curved spillways to dissipate energy and divert flow for bend flow. Using the entropy weight and TOPSIS methods, a multi-criteria evaluation system was established for comprehensive energy dissipation and flow diversion effects of R-SEDs. Orthogonal tests and numerical simulation were conducted to analyze factors affecting these effects (average R-SED height, R-SED angle, R-SED spacing, bend width, bend centerline radius and discharge flow rate). It was found that bend width and bend centerline radius significantly affected R-SEDs' energy dissipation effects. Average R-SED height, R-SED spacing and bend centerline radius significantly affected R-SEDs' flow diversion effects. Bend width, average R-SED height and bend centerline radius significantly affected R-SEDs' combined effects of energy dissipation and flow diversion. Their energy dissipation effects were larger than the flow diversion effects. R-SEDs can effectively alleviate adverse hydraulic phenomena in curved spillways. With the recommended parameters, R-SEDs showed the best performance, with the energy dissipation rate increasing by 18.67% and the water surface superelevation coefficient decreasing by 26.14%. The accuracy of the multi-criteria evaluation system was verified. This study can provide a reference for the R-SED design of similar curved spillways.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":"33 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the influencing parameters of rough-strip energy dissipators of curved spillways based on orthogonal tests and numerical simulation\",\"authors\":\"Honghong Zhang, Zhenwei Mu, Yiyun Wang, Zhen Zhou, Fan Fan, Fanqi Li, Hao Ma\",\"doi\":\"10.2166/hydro.2023.201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Rough-strip energy dissipators (R-SEDs) can be arranged at the bend bottom of curved spillways to dissipate energy and divert flow for bend flow. Using the entropy weight and TOPSIS methods, a multi-criteria evaluation system was established for comprehensive energy dissipation and flow diversion effects of R-SEDs. Orthogonal tests and numerical simulation were conducted to analyze factors affecting these effects (average R-SED height, R-SED angle, R-SED spacing, bend width, bend centerline radius and discharge flow rate). It was found that bend width and bend centerline radius significantly affected R-SEDs' energy dissipation effects. Average R-SED height, R-SED spacing and bend centerline radius significantly affected R-SEDs' flow diversion effects. Bend width, average R-SED height and bend centerline radius significantly affected R-SEDs' combined effects of energy dissipation and flow diversion. Their energy dissipation effects were larger than the flow diversion effects. R-SEDs can effectively alleviate adverse hydraulic phenomena in curved spillways. With the recommended parameters, R-SEDs showed the best performance, with the energy dissipation rate increasing by 18.67% and the water surface superelevation coefficient decreasing by 26.14%. The accuracy of the multi-criteria evaluation system was verified. This study can provide a reference for the R-SED design of similar curved spillways.\",\"PeriodicalId\":54801,\"journal\":{\"name\":\"Journal of Hydroinformatics\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydroinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/hydro.2023.201\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/hydro.2023.201","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

摘要在弯曲溢洪道弯道底部布置粗条形消能器,对弯曲水流起到消能分流的作用。采用熵权法和TOPSIS法,建立了R-SEDs综合消能导流效果的多指标评价体系。通过正交试验和数值模拟分析了影响这些效果的因素(平均R-SED高度、R-SED角度、R-SED间距、弯道宽度、弯道中心线半径和流量)。弯曲宽度和弯曲中心线半径显著影响r - sed的耗能效果。平均R-SED高度、R-SED间距和弯道中心线半径显著影响R-SED的导流效果。弯道宽度、平均R-SED高度和弯道中心线半径显著影响R-SED耗能和导流的综合效果。它们的能量耗散效应大于导流效应。R-SEDs可以有效缓解弯曲溢洪道的不利水力现象。在推荐参数下,R-SEDs性能最佳,耗散率提高18.67%,水面超高程系数降低26.14%。验证了多准则评价体系的准确性。该研究可为类似弯道的R-SED设计提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on the influencing parameters of rough-strip energy dissipators of curved spillways based on orthogonal tests and numerical simulation
Abstract Rough-strip energy dissipators (R-SEDs) can be arranged at the bend bottom of curved spillways to dissipate energy and divert flow for bend flow. Using the entropy weight and TOPSIS methods, a multi-criteria evaluation system was established for comprehensive energy dissipation and flow diversion effects of R-SEDs. Orthogonal tests and numerical simulation were conducted to analyze factors affecting these effects (average R-SED height, R-SED angle, R-SED spacing, bend width, bend centerline radius and discharge flow rate). It was found that bend width and bend centerline radius significantly affected R-SEDs' energy dissipation effects. Average R-SED height, R-SED spacing and bend centerline radius significantly affected R-SEDs' flow diversion effects. Bend width, average R-SED height and bend centerline radius significantly affected R-SEDs' combined effects of energy dissipation and flow diversion. Their energy dissipation effects were larger than the flow diversion effects. R-SEDs can effectively alleviate adverse hydraulic phenomena in curved spillways. With the recommended parameters, R-SEDs showed the best performance, with the energy dissipation rate increasing by 18.67% and the water surface superelevation coefficient decreasing by 26.14%. The accuracy of the multi-criteria evaluation system was verified. This study can provide a reference for the R-SED design of similar curved spillways.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
期刊最新文献
A genetic algorithm's novel rainfall distribution method for optimized hydrological modeling at basin scales Accelerating regional-scale groundwater flow simulations with a hybrid deep neural network model incorporating mixed input types: A case study of the northeast Qatar aquifer Advancing rapid urban flood prediction: a spatiotemporal deep learning approach with uneven rainfall and attention mechanism A parallel multi-objective optimization based on adaptive surrogate model for combined operation of multiple hydraulic facilities in water diversion project Long-term inflow forecast using meteorological data based on long short-term memory neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1