Qi Luo;Minglei Bai;Shuhan Chen;Kai Gao;Lairong Yin;Ronghua Du
{"title":"仿生仿生手控制器的力控制","authors":"Qi Luo;Minglei Bai;Shuhan Chen;Kai Gao;Lairong Yin;Ronghua Du","doi":"10.1109/JTEHM.2023.3320715","DOIUrl":null,"url":null,"abstract":"Prosthetic hands are frequently rejected due to frustrations in daily uses. By adopting principles of human neuromuscular control, it could potentially achieve human-like compliance in hand functions, thereby improving functionality in prosthetic hand. Previous studies have confirmed the feasibility of real-time emulation of neuromuscular reflex for prosthetic control. This study further to explore the effect of feedforward electromyograph (EMG) decoding and proprioception on the biomimetic controller. The biomimetic controller included a feedforward Bayesian model for decoding alpha motor commands from stump EMG, a muscle model, and a closed-loop component with a model of muscle spindle modified with spiking afferents. Real-time control was enabled by neuromorphic hardware to accelerate evaluation of biologically inspired models. This allows us to investigate which aspects in the controller could benefit from biological properties for improvements on force control performance. 3 non-disabled and 3 amputee subjects were recruited to conduct a “press-without-break” task, subjects were required to press a transducer till the pressure stabilized in an expected range without breaking the virtual object. We tested whether introducing more complex but biomimetic models could enhance the task performance. Data showed that when replacing proportional feedback with the neuromorphic spindle, success rates of amputees increased by 12.2% and failures due to breakage decreased by 26.3%. More prominently, success rates increased by 55.5% and failures decreased by 79.3% when replacing a linear model of EMG with the Bayesian model in the feedforward EMG processing. Results suggest that mimicking biological properties in feedback and feedforward control may improve the manipulation of objects by amputees using prosthetic hands. Clinical and Translational Impact Statement: This control approach may eventually assist amputees to perform fine force control when using prosthetic hands, thereby improving the motor performance of amputees. It highlights the promising potential of the biomimetic controller integrating biological properties implemented on neuromorphic models as a viable approach for clinical application in prosthetic hands.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"66-75"},"PeriodicalIF":3.7000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10268050","citationCount":"0","resultStr":"{\"title\":\"Enhancing Force Control of Prosthetic Controller for Hand Prosthesis by Mimicking Biological Properties\",\"authors\":\"Qi Luo;Minglei Bai;Shuhan Chen;Kai Gao;Lairong Yin;Ronghua Du\",\"doi\":\"10.1109/JTEHM.2023.3320715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prosthetic hands are frequently rejected due to frustrations in daily uses. By adopting principles of human neuromuscular control, it could potentially achieve human-like compliance in hand functions, thereby improving functionality in prosthetic hand. Previous studies have confirmed the feasibility of real-time emulation of neuromuscular reflex for prosthetic control. This study further to explore the effect of feedforward electromyograph (EMG) decoding and proprioception on the biomimetic controller. The biomimetic controller included a feedforward Bayesian model for decoding alpha motor commands from stump EMG, a muscle model, and a closed-loop component with a model of muscle spindle modified with spiking afferents. Real-time control was enabled by neuromorphic hardware to accelerate evaluation of biologically inspired models. This allows us to investigate which aspects in the controller could benefit from biological properties for improvements on force control performance. 3 non-disabled and 3 amputee subjects were recruited to conduct a “press-without-break” task, subjects were required to press a transducer till the pressure stabilized in an expected range without breaking the virtual object. We tested whether introducing more complex but biomimetic models could enhance the task performance. Data showed that when replacing proportional feedback with the neuromorphic spindle, success rates of amputees increased by 12.2% and failures due to breakage decreased by 26.3%. More prominently, success rates increased by 55.5% and failures decreased by 79.3% when replacing a linear model of EMG with the Bayesian model in the feedforward EMG processing. Results suggest that mimicking biological properties in feedback and feedforward control may improve the manipulation of objects by amputees using prosthetic hands. Clinical and Translational Impact Statement: This control approach may eventually assist amputees to perform fine force control when using prosthetic hands, thereby improving the motor performance of amputees. It highlights the promising potential of the biomimetic controller integrating biological properties implemented on neuromorphic models as a viable approach for clinical application in prosthetic hands.\",\"PeriodicalId\":54255,\"journal\":{\"name\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"volume\":\"12 \",\"pages\":\"66-75\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10268050\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10268050/\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10268050/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Enhancing Force Control of Prosthetic Controller for Hand Prosthesis by Mimicking Biological Properties
Prosthetic hands are frequently rejected due to frustrations in daily uses. By adopting principles of human neuromuscular control, it could potentially achieve human-like compliance in hand functions, thereby improving functionality in prosthetic hand. Previous studies have confirmed the feasibility of real-time emulation of neuromuscular reflex for prosthetic control. This study further to explore the effect of feedforward electromyograph (EMG) decoding and proprioception on the biomimetic controller. The biomimetic controller included a feedforward Bayesian model for decoding alpha motor commands from stump EMG, a muscle model, and a closed-loop component with a model of muscle spindle modified with spiking afferents. Real-time control was enabled by neuromorphic hardware to accelerate evaluation of biologically inspired models. This allows us to investigate which aspects in the controller could benefit from biological properties for improvements on force control performance. 3 non-disabled and 3 amputee subjects were recruited to conduct a “press-without-break” task, subjects were required to press a transducer till the pressure stabilized in an expected range without breaking the virtual object. We tested whether introducing more complex but biomimetic models could enhance the task performance. Data showed that when replacing proportional feedback with the neuromorphic spindle, success rates of amputees increased by 12.2% and failures due to breakage decreased by 26.3%. More prominently, success rates increased by 55.5% and failures decreased by 79.3% when replacing a linear model of EMG with the Bayesian model in the feedforward EMG processing. Results suggest that mimicking biological properties in feedback and feedforward control may improve the manipulation of objects by amputees using prosthetic hands. Clinical and Translational Impact Statement: This control approach may eventually assist amputees to perform fine force control when using prosthetic hands, thereby improving the motor performance of amputees. It highlights the promising potential of the biomimetic controller integrating biological properties implemented on neuromorphic models as a viable approach for clinical application in prosthetic hands.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.