粒子物理的条件集生成

IF 6.3 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine Learning Science and Technology Pub Date : 2023-10-13 DOI:10.1088/2632-2153/ad035b
Nathalie Soybelman, Nilotpal Kakati, Lukas Heinrich, Francesco Armando Di Bello, Etienne Dreyer, Sanmay Ganguly, Eilam Gross, Marumi Kado, Jonathan Shlomi
{"title":"粒子物理的条件集生成","authors":"Nathalie Soybelman, Nilotpal Kakati, Lukas Heinrich, Francesco Armando Di Bello, Etienne Dreyer, Sanmay Ganguly, Eilam Gross, Marumi Kado, Jonathan Shlomi","doi":"10.1088/2632-2153/ad035b","DOIUrl":null,"url":null,"abstract":"Abstract The simulation of particle physics data is a fundamental but computationally
intensive ingredient for physics analysis at the Large Hadron Collider, where observational
set-valued data is generated conditional on a set of incoming particles. To accelerate this
task, we present a novel generative model based on a graph neural network and slot-attention
components, which exceeds the performance of pre-existing baselines.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"54 1","pages":"0"},"PeriodicalIF":6.3000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Set-Conditional Set Generation for Particle Physics\",\"authors\":\"Nathalie Soybelman, Nilotpal Kakati, Lukas Heinrich, Francesco Armando Di Bello, Etienne Dreyer, Sanmay Ganguly, Eilam Gross, Marumi Kado, Jonathan Shlomi\",\"doi\":\"10.1088/2632-2153/ad035b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The simulation of particle physics data is a fundamental but computationally
intensive ingredient for physics analysis at the Large Hadron Collider, where observational
set-valued data is generated conditional on a set of incoming particles. To accelerate this
task, we present a novel generative model based on a graph neural network and slot-attention
components, which exceeds the performance of pre-existing baselines.\",\"PeriodicalId\":33757,\"journal\":{\"name\":\"Machine Learning Science and Technology\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ad035b\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad035b","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

摘要

摘要:粒子物理数据的模拟是大型强子对撞机物理分析的一个基本但计算密集的组成部分,在大型强子对撞机中,观测集值数据是在一组入射粒子的条件下生成的。为了加速这一任务,我们提出了一种基于图神经网络和插槽注意力组件的新型生成模型,其性能超过了现有基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Set-Conditional Set Generation for Particle Physics
Abstract The simulation of particle physics data is a fundamental but computationally
intensive ingredient for physics analysis at the Large Hadron Collider, where observational
set-valued data is generated conditional on a set of incoming particles. To accelerate this
task, we present a novel generative model based on a graph neural network and slot-attention
components, which exceeds the performance of pre-existing baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Learning Science and Technology
Machine Learning Science and Technology Computer Science-Artificial Intelligence
CiteScore
9.10
自引率
4.40%
发文量
86
审稿时长
5 weeks
期刊介绍: Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.
期刊最新文献
Quality assurance for online adaptive radiotherapy: a secondary dose verification model with geometry-encoded U-Net. Optimizing ZX-diagrams with deep reinforcement learning DiffLense: a conditional diffusion model for super-resolution of gravitational lensing data Equivariant tensor network potentials Masked particle modeling on sets: towards self-supervised high energy physics foundation models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1