{"title":"自然氧化铝/铜双膜的反常霍尔效应","authors":"Lijuan Zhao, Yuzhi Li, Yongzuo Wang, Peng Chen, Bing Lv, Cunxu Gao","doi":"10.1088/1361-6463/ad06ed","DOIUrl":null,"url":null,"abstract":"Abstract An unexpectedly larger current-induced spin–orbit torque in oxidized Cu (CuO x )/ferromagnet (FM) than heavy-metal/FM has recently attracted intense attention in spintronic studies. Although the two mechanisms, interfacial Rashba Edelstein effect and spin-vorticity coupling, have been put forward based on the two different conductive features of CuO x , i.e. electrical insulator and gradient of electrical mobility, the detailed investigation of transport of CuO x is still lacking. Here we experimentally report the positive and negative anomalous Hall effect (AHE) in naturally oxidized normal-metal Al/Cu double films. We found that the onset temperature of AHE corresponds to magnetic transition temperature of CuO x . Furthermore, by comparing Hall resistance of the crystalline and amorphous Cu/Al double films, we identify that the positive anomalous Hall resistance attributes to magnetic moment of CuO x itself, while the negative anomalous Hall resistance can originate from the spin or orbital currents generated at the CuO x /AlO x interface interact with magnetization of CuO x and its inverse process.","PeriodicalId":16833,"journal":{"name":"Journal of Physics D","volume":"38 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomalous Hall effect in naturally oxidized normal-metal Al/Cu double films\",\"authors\":\"Lijuan Zhao, Yuzhi Li, Yongzuo Wang, Peng Chen, Bing Lv, Cunxu Gao\",\"doi\":\"10.1088/1361-6463/ad06ed\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract An unexpectedly larger current-induced spin–orbit torque in oxidized Cu (CuO x )/ferromagnet (FM) than heavy-metal/FM has recently attracted intense attention in spintronic studies. Although the two mechanisms, interfacial Rashba Edelstein effect and spin-vorticity coupling, have been put forward based on the two different conductive features of CuO x , i.e. electrical insulator and gradient of electrical mobility, the detailed investigation of transport of CuO x is still lacking. Here we experimentally report the positive and negative anomalous Hall effect (AHE) in naturally oxidized normal-metal Al/Cu double films. We found that the onset temperature of AHE corresponds to magnetic transition temperature of CuO x . Furthermore, by comparing Hall resistance of the crystalline and amorphous Cu/Al double films, we identify that the positive anomalous Hall resistance attributes to magnetic moment of CuO x itself, while the negative anomalous Hall resistance can originate from the spin or orbital currents generated at the CuO x /AlO x interface interact with magnetization of CuO x and its inverse process.\",\"PeriodicalId\":16833,\"journal\":{\"name\":\"Journal of Physics D\",\"volume\":\"38 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/ad06ed\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad06ed","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Anomalous Hall effect in naturally oxidized normal-metal Al/Cu double films
Abstract An unexpectedly larger current-induced spin–orbit torque in oxidized Cu (CuO x )/ferromagnet (FM) than heavy-metal/FM has recently attracted intense attention in spintronic studies. Although the two mechanisms, interfacial Rashba Edelstein effect and spin-vorticity coupling, have been put forward based on the two different conductive features of CuO x , i.e. electrical insulator and gradient of electrical mobility, the detailed investigation of transport of CuO x is still lacking. Here we experimentally report the positive and negative anomalous Hall effect (AHE) in naturally oxidized normal-metal Al/Cu double films. We found that the onset temperature of AHE corresponds to magnetic transition temperature of CuO x . Furthermore, by comparing Hall resistance of the crystalline and amorphous Cu/Al double films, we identify that the positive anomalous Hall resistance attributes to magnetic moment of CuO x itself, while the negative anomalous Hall resistance can originate from the spin or orbital currents generated at the CuO x /AlO x interface interact with magnetization of CuO x and its inverse process.