{"title":"岩土稳定性分析中的集合机器学习综合评估及可解释性","authors":"Shan Lin, Zenglong Liang, Shuaixing Zhao, Miao Dong, Hongwei Guo, Hong Zheng","doi":"10.1007/s10999-023-09679-0","DOIUrl":null,"url":null,"abstract":"<div><p>We investigated the application of ensemble learning approaches in geotechnical stability analysis and proposed a compound explainable artificial intelligence (XAI) fitted to ensemble learning. 742 sets of data from real-world geotechnical engineering records are collected and six critical features that contribute to the stability analysis are selected. First, we visualized the data structure and examined the relationships between various features from both a statistical and an engineering standpoint. Seven state-of-the-art ensemble models and several classical machine learning models were compared and evaluated on slope stability prediction using real-world data. Further, we studied model fusion using the stacking strategy and the performance of model fusion that contributes to slope stability prediction. The results manifested that the ensemble learning model outperformed the classical single predictive models, with the CatBoost model yielding the most favourable results. To dive deeper into the credibility and explainability of CatBoost composed of multiple learners, the compound XAI fitted to CatBoost was formulated using feature importance, sensitivity analysis, and Shapley additive explanation (SHAP), which further strengthened the credibility of ensemble learning in geotechnical stability analysis.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"20 2","pages":"331 - 352"},"PeriodicalIF":2.7000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive evaluation of ensemble machine learning in geotechnical stability analysis and explainability\",\"authors\":\"Shan Lin, Zenglong Liang, Shuaixing Zhao, Miao Dong, Hongwei Guo, Hong Zheng\",\"doi\":\"10.1007/s10999-023-09679-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigated the application of ensemble learning approaches in geotechnical stability analysis and proposed a compound explainable artificial intelligence (XAI) fitted to ensemble learning. 742 sets of data from real-world geotechnical engineering records are collected and six critical features that contribute to the stability analysis are selected. First, we visualized the data structure and examined the relationships between various features from both a statistical and an engineering standpoint. Seven state-of-the-art ensemble models and several classical machine learning models were compared and evaluated on slope stability prediction using real-world data. Further, we studied model fusion using the stacking strategy and the performance of model fusion that contributes to slope stability prediction. The results manifested that the ensemble learning model outperformed the classical single predictive models, with the CatBoost model yielding the most favourable results. To dive deeper into the credibility and explainability of CatBoost composed of multiple learners, the compound XAI fitted to CatBoost was formulated using feature importance, sensitivity analysis, and Shapley additive explanation (SHAP), which further strengthened the credibility of ensemble learning in geotechnical stability analysis.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":593,\"journal\":{\"name\":\"International Journal of Mechanics and Materials in Design\",\"volume\":\"20 2\",\"pages\":\"331 - 352\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics and Materials in Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10999-023-09679-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-023-09679-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A comprehensive evaluation of ensemble machine learning in geotechnical stability analysis and explainability
We investigated the application of ensemble learning approaches in geotechnical stability analysis and proposed a compound explainable artificial intelligence (XAI) fitted to ensemble learning. 742 sets of data from real-world geotechnical engineering records are collected and six critical features that contribute to the stability analysis are selected. First, we visualized the data structure and examined the relationships between various features from both a statistical and an engineering standpoint. Seven state-of-the-art ensemble models and several classical machine learning models were compared and evaluated on slope stability prediction using real-world data. Further, we studied model fusion using the stacking strategy and the performance of model fusion that contributes to slope stability prediction. The results manifested that the ensemble learning model outperformed the classical single predictive models, with the CatBoost model yielding the most favourable results. To dive deeper into the credibility and explainability of CatBoost composed of multiple learners, the compound XAI fitted to CatBoost was formulated using feature importance, sensitivity analysis, and Shapley additive explanation (SHAP), which further strengthened the credibility of ensemble learning in geotechnical stability analysis.
期刊介绍:
It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design.
Analytical synopsis of contents:
The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design:
Intelligent Design:
Nano-engineering and Nano-science in Design;
Smart Materials and Adaptive Structures in Design;
Mechanism(s) Design;
Design against Failure;
Design for Manufacturing;
Design of Ultralight Structures;
Design for a Clean Environment;
Impact and Crashworthiness;
Microelectronic Packaging Systems.
Advanced Materials in Design:
Newly Engineered Materials;
Smart Materials and Adaptive Structures;
Micromechanical Modelling of Composites;
Damage Characterisation of Advanced/Traditional Materials;
Alternative Use of Traditional Materials in Design;
Functionally Graded Materials;
Failure Analysis: Fatigue and Fracture;
Multiscale Modelling Concepts and Methodology;
Interfaces, interfacial properties and characterisation.
Design Analysis and Optimisation:
Shape and Topology Optimisation;
Structural Optimisation;
Optimisation Algorithms in Design;
Nonlinear Mechanics in Design;
Novel Numerical Tools in Design;
Geometric Modelling and CAD Tools in Design;
FEM, BEM and Hybrid Methods;
Integrated Computer Aided Design;
Computational Failure Analysis;
Coupled Thermo-Electro-Mechanical Designs.