{"title":"提出了一种基于临界粘度模型和粗糙度高度预测的涡轮叶栅颗粒沉积预测方法","authors":"Hong Wang, Peilin He, Jialong Li, Huawei Lu","doi":"10.1115/1.4063752","DOIUrl":null,"url":null,"abstract":"Abstract Particle deposition is a common phenomenon in a turbine cascade. It can change the surface condition, which influences the flow and heat transfer. It is very important to accurately predict the particle deposition and surface condition changes. In this study, a combined particle deposition algorithm is proposed based on the critical viscosity deposition model and roughness height prediction. It couples the influence of surface roughness into the particle deposition. The combined model newly developed is employed for the particle deposition. Its effects in a turbine cascade with the combine model is discussed. The results show the deposition is mainly concentrated on the leading edge of the cascade and the pressure side. Small diameter particles are mainly deposited on the suction side and the large are mainly deposited on the pressure side due to inertial effect. The deposition number increases with the particle diameter. As time goes by, more particles deposit on the wall, which builds roughness height and shows a spreading characteristic. Heat transfer is enhanced by the surface roughness and flow characteristics including separation vortex and leakage vortex, in which flow pattern may dominate the effect. In addition, the separation vortex and leakage vortex have a significant effect on the deposition distribution, especially for smaller diameter particles","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":"41 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A method proposed to predict particle deposition based on critical viscosity model and roughness height prediction in a turbine cascade\",\"authors\":\"Hong Wang, Peilin He, Jialong Li, Huawei Lu\",\"doi\":\"10.1115/1.4063752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Particle deposition is a common phenomenon in a turbine cascade. It can change the surface condition, which influences the flow and heat transfer. It is very important to accurately predict the particle deposition and surface condition changes. In this study, a combined particle deposition algorithm is proposed based on the critical viscosity deposition model and roughness height prediction. It couples the influence of surface roughness into the particle deposition. The combined model newly developed is employed for the particle deposition. Its effects in a turbine cascade with the combine model is discussed. The results show the deposition is mainly concentrated on the leading edge of the cascade and the pressure side. Small diameter particles are mainly deposited on the suction side and the large are mainly deposited on the pressure side due to inertial effect. The deposition number increases with the particle diameter. As time goes by, more particles deposit on the wall, which builds roughness height and shows a spreading characteristic. Heat transfer is enhanced by the surface roughness and flow characteristics including separation vortex and leakage vortex, in which flow pattern may dominate the effect. In addition, the separation vortex and leakage vortex have a significant effect on the deposition distribution, especially for smaller diameter particles\",\"PeriodicalId\":49966,\"journal\":{\"name\":\"Journal of Turbomachinery-Transactions of the Asme\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Turbomachinery-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063752\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbomachinery-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063752","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A method proposed to predict particle deposition based on critical viscosity model and roughness height prediction in a turbine cascade
Abstract Particle deposition is a common phenomenon in a turbine cascade. It can change the surface condition, which influences the flow and heat transfer. It is very important to accurately predict the particle deposition and surface condition changes. In this study, a combined particle deposition algorithm is proposed based on the critical viscosity deposition model and roughness height prediction. It couples the influence of surface roughness into the particle deposition. The combined model newly developed is employed for the particle deposition. Its effects in a turbine cascade with the combine model is discussed. The results show the deposition is mainly concentrated on the leading edge of the cascade and the pressure side. Small diameter particles are mainly deposited on the suction side and the large are mainly deposited on the pressure side due to inertial effect. The deposition number increases with the particle diameter. As time goes by, more particles deposit on the wall, which builds roughness height and shows a spreading characteristic. Heat transfer is enhanced by the surface roughness and flow characteristics including separation vortex and leakage vortex, in which flow pattern may dominate the effect. In addition, the separation vortex and leakage vortex have a significant effect on the deposition distribution, especially for smaller diameter particles
期刊介绍:
The Journal of Turbomachinery publishes archival-quality, peer-reviewed technical papers that advance the state-of-the-art of turbomachinery technology related to gas turbine engines. The broad scope of the subject matter includes the fluid dynamics, heat transfer, and aeromechanics technology associated with the design, analysis, modeling, testing, and performance of turbomachinery. Emphasis is placed on gas-path technologies associated with axial compressors, centrifugal compressors, and turbines.
Topics: Aerodynamic design, analysis, and test of compressor and turbine blading; Compressor stall, surge, and operability issues; Heat transfer phenomena and film cooling design, analysis, and testing in turbines; Aeromechanical instabilities; Computational fluid dynamics (CFD) applied to turbomachinery, boundary layer development, measurement techniques, and cavity and leaking flows.