{"title":"煤炭蠕变替代材料的制备及其仿煤柱蠕变损伤演变模拟","authors":"Jinshuai Guo, Guangpei Zhang","doi":"10.1007/s11043-023-09643-7","DOIUrl":null,"url":null,"abstract":"<div><p>Surrogate materials were fabricated to investigate the creep damage characteristics of coal pillars in the long wall mining method. Similarity ratios for coal creep viscosity coefficient and creep rate were determined from analyzes derived from the fractional creep constitutive equation. Surrogate materials consisting of sand, paraffin, vaseline, and silicone oil, were prepared to simulate creep behavior. The creep characteristics of these surrogate materials were identified, and the compositions including the ratios of aggregate to binder, and paraffin to vaseline and silicone oil were determined. A physical similarity model was established to calculate the stress and deformation, and determine the damage characteristics of a coal pillar. The results indicate that the stress in the coal pillar decreases over time, and the maximum principal stress shifts toward the center before eventually taking an arc-shaped distribution. The vertical and horizontal distortions of the coal pillar decrease gradually from the coal wall on each side toward the center, resulting in a convex and inverted S-shaped deformation pattern, respectively. The coal pillar develops progressive damage on both sides, with the damaged area gradually increasing toward the middle section, ultimately leading to the collapse of the entire coal pillar. These findings provide valuable insight into the preparation of creep surrogate materials and the management of coal pillar stability.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 1","pages":"99 - 123"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of a surrogate material for coal creep and the simulation of its damage evolution emulating the coal pillar creep\",\"authors\":\"Jinshuai Guo, Guangpei Zhang\",\"doi\":\"10.1007/s11043-023-09643-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Surrogate materials were fabricated to investigate the creep damage characteristics of coal pillars in the long wall mining method. Similarity ratios for coal creep viscosity coefficient and creep rate were determined from analyzes derived from the fractional creep constitutive equation. Surrogate materials consisting of sand, paraffin, vaseline, and silicone oil, were prepared to simulate creep behavior. The creep characteristics of these surrogate materials were identified, and the compositions including the ratios of aggregate to binder, and paraffin to vaseline and silicone oil were determined. A physical similarity model was established to calculate the stress and deformation, and determine the damage characteristics of a coal pillar. The results indicate that the stress in the coal pillar decreases over time, and the maximum principal stress shifts toward the center before eventually taking an arc-shaped distribution. The vertical and horizontal distortions of the coal pillar decrease gradually from the coal wall on each side toward the center, resulting in a convex and inverted S-shaped deformation pattern, respectively. The coal pillar develops progressive damage on both sides, with the damaged area gradually increasing toward the middle section, ultimately leading to the collapse of the entire coal pillar. These findings provide valuable insight into the preparation of creep surrogate materials and the management of coal pillar stability.</p></div>\",\"PeriodicalId\":698,\"journal\":{\"name\":\"Mechanics of Time-Dependent Materials\",\"volume\":\"28 1\",\"pages\":\"99 - 123\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Time-Dependent Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11043-023-09643-7\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-023-09643-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
摘要
为研究长壁开采法中煤柱的蠕变破坏特征,制作了代用材料。煤的蠕变粘度系数和蠕变速率的相似比是根据分式蠕变构成方程的分析结果确定的。为模拟蠕变行为,制备了由沙子、石蜡、凡士林和硅油组成的代用材料。确定了这些代用材料的蠕变特性,并确定了其成分,包括骨料与粘结剂的比例,以及石蜡与凡士林和硅油的比例。建立了一个物理相似性模型来计算应力和变形,并确定煤柱的破坏特征。结果表明,煤柱中的应力随着时间的推移而减小,最大主应力向中心移动,最终呈弧形分布。煤柱的纵向和横向变形从两侧煤壁向中心逐渐减小,分别形成凸形和倒 S 形变形模式。煤柱两侧出现渐进式破坏,破坏面积向中段逐渐增大,最终导致整个煤柱坍塌。这些发现为蠕变代用材料的制备和煤柱稳定性的管理提供了有价值的启示。
Preparation of a surrogate material for coal creep and the simulation of its damage evolution emulating the coal pillar creep
Surrogate materials were fabricated to investigate the creep damage characteristics of coal pillars in the long wall mining method. Similarity ratios for coal creep viscosity coefficient and creep rate were determined from analyzes derived from the fractional creep constitutive equation. Surrogate materials consisting of sand, paraffin, vaseline, and silicone oil, were prepared to simulate creep behavior. The creep characteristics of these surrogate materials were identified, and the compositions including the ratios of aggregate to binder, and paraffin to vaseline and silicone oil were determined. A physical similarity model was established to calculate the stress and deformation, and determine the damage characteristics of a coal pillar. The results indicate that the stress in the coal pillar decreases over time, and the maximum principal stress shifts toward the center before eventually taking an arc-shaped distribution. The vertical and horizontal distortions of the coal pillar decrease gradually from the coal wall on each side toward the center, resulting in a convex and inverted S-shaped deformation pattern, respectively. The coal pillar develops progressive damage on both sides, with the damaged area gradually increasing toward the middle section, ultimately leading to the collapse of the entire coal pillar. These findings provide valuable insight into the preparation of creep surrogate materials and the management of coal pillar stability.
期刊介绍:
Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties.
The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.