{"title":"基于关键词共现网络分析的汽车维修人工智能应用趋势研究","authors":"Wei Li, Guoyan Li, Sagar Kamarthi","doi":"10.36001/ijphm.2023.v14i2.3583","DOIUrl":null,"url":null,"abstract":"The increasing complexity of a vehicle's digital architecture has created new opportunities to revolutionize the maintenance paradigm. The Artificial Intelligence (AI) assisted maintenance system is a promising solution to enhance efficiency and reduce costs. This review paper studies the research trends in AI-assisted vehicle maintenance via keyword co-occurrence network (KCN) analysis. The KCN methodology is applied to systematically analyze the keywords extracted from 3153 peer-reviewed papers published between 2011 and 2022. The network metrics and trend analysis uncovered important knowledge components and structure of the research field covering AI applications for vehicle maintenance. The emerging and declining research trends in AI models and vehicle maintenance application scenarios were identified through trend visualizations. In summary, this review paper provides a comprehensive high-level overview of AI-assisted vehicle maintenance. It serves as a valuable resource for researchers and practitioners in the automotive industry. This paper also highlights potential research opportunities, limitations, and challenges related to AI-assisted vehicle maintenance.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Study of Trends in AI Applications for Vehicle Maintenance Through Keyword Co-occurrence Network Analysis\",\"authors\":\"Wei Li, Guoyan Li, Sagar Kamarthi\",\"doi\":\"10.36001/ijphm.2023.v14i2.3583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing complexity of a vehicle's digital architecture has created new opportunities to revolutionize the maintenance paradigm. The Artificial Intelligence (AI) assisted maintenance system is a promising solution to enhance efficiency and reduce costs. This review paper studies the research trends in AI-assisted vehicle maintenance via keyword co-occurrence network (KCN) analysis. The KCN methodology is applied to systematically analyze the keywords extracted from 3153 peer-reviewed papers published between 2011 and 2022. The network metrics and trend analysis uncovered important knowledge components and structure of the research field covering AI applications for vehicle maintenance. The emerging and declining research trends in AI models and vehicle maintenance application scenarios were identified through trend visualizations. In summary, this review paper provides a comprehensive high-level overview of AI-assisted vehicle maintenance. It serves as a valuable resource for researchers and practitioners in the automotive industry. This paper also highlights potential research opportunities, limitations, and challenges related to AI-assisted vehicle maintenance.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/ijphm.2023.v14i2.3583\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2023.v14i2.3583","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The Study of Trends in AI Applications for Vehicle Maintenance Through Keyword Co-occurrence Network Analysis
The increasing complexity of a vehicle's digital architecture has created new opportunities to revolutionize the maintenance paradigm. The Artificial Intelligence (AI) assisted maintenance system is a promising solution to enhance efficiency and reduce costs. This review paper studies the research trends in AI-assisted vehicle maintenance via keyword co-occurrence network (KCN) analysis. The KCN methodology is applied to systematically analyze the keywords extracted from 3153 peer-reviewed papers published between 2011 and 2022. The network metrics and trend analysis uncovered important knowledge components and structure of the research field covering AI applications for vehicle maintenance. The emerging and declining research trends in AI models and vehicle maintenance application scenarios were identified through trend visualizations. In summary, this review paper provides a comprehensive high-level overview of AI-assisted vehicle maintenance. It serves as a valuable resource for researchers and practitioners in the automotive industry. This paper also highlights potential research opportunities, limitations, and challenges related to AI-assisted vehicle maintenance.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.