{"title":"流动磁体自旋动力学模拟的等变神经网络","authors":"Yu Miyazaki","doi":"10.1088/2632-2153/acffa2","DOIUrl":null,"url":null,"abstract":"Abstract I present a novel equivariant neural network architecture for the large-scale spin dynamics simulation of the Kondo lattice model. This neural network mainly consists of tensor-product-based convolution layers and ensures two equivariances: translations of the lattice and rotations of the spins. I implement equivariant neural networks for two Kondo lattice models on two-dimensional square and triangular lattices, and perform training and validation. In the equivariant model for the square lattice, the validation error (based on root mean squared error) is reduced to less than one-third compared to a model using invariant descriptors as inputs. Furthermore, I demonstrate the ability to simulate phase transitions of skyrmion crystals in the triangular lattice, by performing dynamics simulations using the trained model.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"5 1","pages":"0"},"PeriodicalIF":6.3000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivariant Neural Networks for Spin Dynamics Simulations of Itinerant Magnets\",\"authors\":\"Yu Miyazaki\",\"doi\":\"10.1088/2632-2153/acffa2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract I present a novel equivariant neural network architecture for the large-scale spin dynamics simulation of the Kondo lattice model. This neural network mainly consists of tensor-product-based convolution layers and ensures two equivariances: translations of the lattice and rotations of the spins. I implement equivariant neural networks for two Kondo lattice models on two-dimensional square and triangular lattices, and perform training and validation. In the equivariant model for the square lattice, the validation error (based on root mean squared error) is reduced to less than one-third compared to a model using invariant descriptors as inputs. Furthermore, I demonstrate the ability to simulate phase transitions of skyrmion crystals in the triangular lattice, by performing dynamics simulations using the trained model.\",\"PeriodicalId\":33757,\"journal\":{\"name\":\"Machine Learning Science and Technology\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/acffa2\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/acffa2","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Equivariant Neural Networks for Spin Dynamics Simulations of Itinerant Magnets
Abstract I present a novel equivariant neural network architecture for the large-scale spin dynamics simulation of the Kondo lattice model. This neural network mainly consists of tensor-product-based convolution layers and ensures two equivariances: translations of the lattice and rotations of the spins. I implement equivariant neural networks for two Kondo lattice models on two-dimensional square and triangular lattices, and perform training and validation. In the equivariant model for the square lattice, the validation error (based on root mean squared error) is reduced to less than one-third compared to a model using invariant descriptors as inputs. Furthermore, I demonstrate the ability to simulate phase transitions of skyrmion crystals in the triangular lattice, by performing dynamics simulations using the trained model.
期刊介绍:
Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.