Hong Seong Park, Kyeong-Rim Yeo, Won Suk Jung, Soo-Kil Kim
{"title":"用于碱性氢氧化的电沉积三元铜镍钼催化剂","authors":"Hong Seong Park, Kyeong-Rim Yeo, Won Suk Jung, Soo-Kil Kim","doi":"10.1007/s13391-023-00457-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we investigated ternary transition metal catalysts composed of Cu, Ni, and Mo for application to hydrogen oxidation reaction (HOR) in alkaline electrolyte. A series of catalysts with a wide range of elemental compositions were fabricated by a simple electrodeposition method, and their material and electrochemical properties were investigated. In particular, to avoid inaccurate activity measurements due to oxidation and reduction of the transition metal-based catalysts during the HOR test, the electrochemical measurements were performed in both H<sub>2</sub>- and N<sub>2</sub>-saturated electrolytes, and the results were compared. The fabricated CuNiMo catalyst with an optimized composition exhibited an excellent HOR activity of 2.03 mA cm<sup>−2</sup> at 0.1 V<sub>RHE</sub>, while the current density decreased only by 0.55 mA cm<sup>−2</sup> after 3000 cycles. The enhanced HOR activity is attributed to the combined effects of the modified crystal structure, increased surface area, alloying effects beneficial to the hydrogen binding energy and OH<sup>−</sup> binding energy, and appropriate surface compositions between the H-adsorbing metallic state and OH-adsorbing oxophilic states. The characteristics of the catalyst demonstrated in this study can provide insights for the development of non-precious catalysts for HOR in alkaline electrolytes.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 3","pages":"293 - 305"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrodeposited Ternary CuNiMo Catalysts for Alkaline Hydrogen Oxidation\",\"authors\":\"Hong Seong Park, Kyeong-Rim Yeo, Won Suk Jung, Soo-Kil Kim\",\"doi\":\"10.1007/s13391-023-00457-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we investigated ternary transition metal catalysts composed of Cu, Ni, and Mo for application to hydrogen oxidation reaction (HOR) in alkaline electrolyte. A series of catalysts with a wide range of elemental compositions were fabricated by a simple electrodeposition method, and their material and electrochemical properties were investigated. In particular, to avoid inaccurate activity measurements due to oxidation and reduction of the transition metal-based catalysts during the HOR test, the electrochemical measurements were performed in both H<sub>2</sub>- and N<sub>2</sub>-saturated electrolytes, and the results were compared. The fabricated CuNiMo catalyst with an optimized composition exhibited an excellent HOR activity of 2.03 mA cm<sup>−2</sup> at 0.1 V<sub>RHE</sub>, while the current density decreased only by 0.55 mA cm<sup>−2</sup> after 3000 cycles. The enhanced HOR activity is attributed to the combined effects of the modified crystal structure, increased surface area, alloying effects beneficial to the hydrogen binding energy and OH<sup>−</sup> binding energy, and appropriate surface compositions between the H-adsorbing metallic state and OH-adsorbing oxophilic states. The characteristics of the catalyst demonstrated in this study can provide insights for the development of non-precious catalysts for HOR in alkaline electrolytes.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":536,\"journal\":{\"name\":\"Electronic Materials Letters\",\"volume\":\"20 3\",\"pages\":\"293 - 305\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13391-023-00457-w\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-023-00457-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本研究探讨了由铜、镍和钼组成的三元过渡金属催化剂在碱性电解液中氢氧化反应(HOR)中的应用。通过简单的电沉积方法制备了一系列元素组成范围广泛的催化剂,并研究了它们的材料和电化学特性。特别是,为了避免在 HOR 测试过程中由于过渡金属基催化剂的氧化和还原而导致活性测量不准确,电化学测量同时在 H2- 和 N2 饱和电解质中进行,并对结果进行了比较。具有优化成分的铜镍钼催化剂在 0.1 VRHE 条件下表现出 2.03 mA cm-2 的优异 HOR 活性,而电流密度在 3000 次循环后仅下降了 0.55 mA cm-2。HOR 活性的提高归功于改良的晶体结构、增大的表面积、有利于氢结合能和羟基结合能的合金效应以及吸附 H 的金属态和吸附羟基的亲氧化态之间适当的表面成分的综合作用。本研究中展示的催化剂特性可为开发用于碱性电解质中 HOR 的非贵金属催化剂提供启示。
Electrodeposited Ternary CuNiMo Catalysts for Alkaline Hydrogen Oxidation
In this study, we investigated ternary transition metal catalysts composed of Cu, Ni, and Mo for application to hydrogen oxidation reaction (HOR) in alkaline electrolyte. A series of catalysts with a wide range of elemental compositions were fabricated by a simple electrodeposition method, and their material and electrochemical properties were investigated. In particular, to avoid inaccurate activity measurements due to oxidation and reduction of the transition metal-based catalysts during the HOR test, the electrochemical measurements were performed in both H2- and N2-saturated electrolytes, and the results were compared. The fabricated CuNiMo catalyst with an optimized composition exhibited an excellent HOR activity of 2.03 mA cm−2 at 0.1 VRHE, while the current density decreased only by 0.55 mA cm−2 after 3000 cycles. The enhanced HOR activity is attributed to the combined effects of the modified crystal structure, increased surface area, alloying effects beneficial to the hydrogen binding energy and OH− binding energy, and appropriate surface compositions between the H-adsorbing metallic state and OH-adsorbing oxophilic states. The characteristics of the catalyst demonstrated in this study can provide insights for the development of non-precious catalysts for HOR in alkaline electrolytes.
期刊介绍:
Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.