统计物理机器学习重整化组

IF 6.3 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine Learning Science and Technology Pub Date : 2023-10-16 DOI:10.1088/2632-2153/ad0101
Wanda Hou, Yi-Zhuang You
{"title":"统计物理机器学习重整化组","authors":"Wanda Hou, Yi-Zhuang You","doi":"10.1088/2632-2153/ad0101","DOIUrl":null,"url":null,"abstract":"Abstract We develop a machine-learning renormalization group (MLRG) algorithm to explore and analyze many-body lattice models in statistical physics. Using the representation learning capability of generative modeling, MLRG automatically learns the optimal renormalization group (RG) transformations from self-generated spin configurations and formulates RG equations without human supervision. The algorithm does not focus on simulating any particular lattice model but broadly explores all possible models compatible with the internal and lattice symmetries given the on-site symmetry representation. It can uncover the RG monotone that governs the RG flow, assuming a strong form of the c -theorem. This enables several downstream tasks, including unsupervised classification of phases, automatic location of phase transitions or critical points, controlled estimation of critical exponents, and operator scaling dimensions. We demonstrate the MLRG method in two-dimensional lattice models with Ising symmetry and show that the algorithm correctly identifies and characterizes the Ising criticality.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"13 1","pages":"0"},"PeriodicalIF":6.3000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine learning renormalization group for statistical physics\",\"authors\":\"Wanda Hou, Yi-Zhuang You\",\"doi\":\"10.1088/2632-2153/ad0101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We develop a machine-learning renormalization group (MLRG) algorithm to explore and analyze many-body lattice models in statistical physics. Using the representation learning capability of generative modeling, MLRG automatically learns the optimal renormalization group (RG) transformations from self-generated spin configurations and formulates RG equations without human supervision. The algorithm does not focus on simulating any particular lattice model but broadly explores all possible models compatible with the internal and lattice symmetries given the on-site symmetry representation. It can uncover the RG monotone that governs the RG flow, assuming a strong form of the c -theorem. This enables several downstream tasks, including unsupervised classification of phases, automatic location of phase transitions or critical points, controlled estimation of critical exponents, and operator scaling dimensions. We demonstrate the MLRG method in two-dimensional lattice models with Ising symmetry and show that the algorithm correctly identifies and characterizes the Ising criticality.\",\"PeriodicalId\":33757,\"journal\":{\"name\":\"Machine Learning Science and Technology\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ad0101\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad0101","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

摘要:我们开发了一种机器学习重整化群(MLRG)算法来探索和分析统计物理中的多体晶格模型。MLRG利用生成建模的表示学习能力,从自生成的自旋构型中自动学习最优重整化群(RG)变换,并在没有人工监督的情况下制定RG方程。该算法不专注于模拟任何特定的晶格模型,而是广泛地探索所有可能与内部和晶格对称兼容的模型,给定现场对称表示。它可以揭示支配RG流的RG单调,假设c定理的强形式。这可以实现几个下游任务,包括相位的无监督分类、相变或临界点的自动定位、临界指数的控制估计和算子缩放维度。我们在具有伊辛对称性的二维晶格模型上验证了MLRG方法,并证明该算法能够正确地识别和表征伊辛临界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning renormalization group for statistical physics
Abstract We develop a machine-learning renormalization group (MLRG) algorithm to explore and analyze many-body lattice models in statistical physics. Using the representation learning capability of generative modeling, MLRG automatically learns the optimal renormalization group (RG) transformations from self-generated spin configurations and formulates RG equations without human supervision. The algorithm does not focus on simulating any particular lattice model but broadly explores all possible models compatible with the internal and lattice symmetries given the on-site symmetry representation. It can uncover the RG monotone that governs the RG flow, assuming a strong form of the c -theorem. This enables several downstream tasks, including unsupervised classification of phases, automatic location of phase transitions or critical points, controlled estimation of critical exponents, and operator scaling dimensions. We demonstrate the MLRG method in two-dimensional lattice models with Ising symmetry and show that the algorithm correctly identifies and characterizes the Ising criticality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Learning Science and Technology
Machine Learning Science and Technology Computer Science-Artificial Intelligence
CiteScore
9.10
自引率
4.40%
发文量
86
审稿时长
5 weeks
期刊介绍: Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.
期刊最新文献
Quality assurance for online adaptive radiotherapy: a secondary dose verification model with geometry-encoded U-Net. Optimizing ZX-diagrams with deep reinforcement learning DiffLense: a conditional diffusion model for super-resolution of gravitational lensing data Equivariant tensor network potentials Masked particle modeling on sets: towards self-supervised high energy physics foundation models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1