{"title":"统计物理机器学习重整化组","authors":"Wanda Hou, Yi-Zhuang You","doi":"10.1088/2632-2153/ad0101","DOIUrl":null,"url":null,"abstract":"Abstract We develop a machine-learning renormalization group (MLRG) algorithm to explore and analyze many-body lattice models in statistical physics. Using the representation learning capability of generative modeling, MLRG automatically learns the optimal renormalization group (RG) transformations from self-generated spin configurations and formulates RG equations without human supervision. The algorithm does not focus on simulating any particular lattice model but broadly explores all possible models compatible with the internal and lattice symmetries given the on-site symmetry representation. It can uncover the RG monotone that governs the RG flow, assuming a strong form of the c -theorem. This enables several downstream tasks, including unsupervised classification of phases, automatic location of phase transitions or critical points, controlled estimation of critical exponents, and operator scaling dimensions. We demonstrate the MLRG method in two-dimensional lattice models with Ising symmetry and show that the algorithm correctly identifies and characterizes the Ising criticality.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"13 1","pages":"0"},"PeriodicalIF":6.3000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine learning renormalization group for statistical physics\",\"authors\":\"Wanda Hou, Yi-Zhuang You\",\"doi\":\"10.1088/2632-2153/ad0101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We develop a machine-learning renormalization group (MLRG) algorithm to explore and analyze many-body lattice models in statistical physics. Using the representation learning capability of generative modeling, MLRG automatically learns the optimal renormalization group (RG) transformations from self-generated spin configurations and formulates RG equations without human supervision. The algorithm does not focus on simulating any particular lattice model but broadly explores all possible models compatible with the internal and lattice symmetries given the on-site symmetry representation. It can uncover the RG monotone that governs the RG flow, assuming a strong form of the c -theorem. This enables several downstream tasks, including unsupervised classification of phases, automatic location of phase transitions or critical points, controlled estimation of critical exponents, and operator scaling dimensions. We demonstrate the MLRG method in two-dimensional lattice models with Ising symmetry and show that the algorithm correctly identifies and characterizes the Ising criticality.\",\"PeriodicalId\":33757,\"journal\":{\"name\":\"Machine Learning Science and Technology\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ad0101\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad0101","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Machine learning renormalization group for statistical physics
Abstract We develop a machine-learning renormalization group (MLRG) algorithm to explore and analyze many-body lattice models in statistical physics. Using the representation learning capability of generative modeling, MLRG automatically learns the optimal renormalization group (RG) transformations from self-generated spin configurations and formulates RG equations without human supervision. The algorithm does not focus on simulating any particular lattice model but broadly explores all possible models compatible with the internal and lattice symmetries given the on-site symmetry representation. It can uncover the RG monotone that governs the RG flow, assuming a strong form of the c -theorem. This enables several downstream tasks, including unsupervised classification of phases, automatic location of phase transitions or critical points, controlled estimation of critical exponents, and operator scaling dimensions. We demonstrate the MLRG method in two-dimensional lattice models with Ising symmetry and show that the algorithm correctly identifies and characterizes the Ising criticality.
期刊介绍:
Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.