Myeonghyeon Kim, Junhwan Kwon, Tenzin Rabga, Yong-il Shin
{"title":"利用合成图像训练的神经网络检测原子玻色-爱因斯坦凝聚体中的涡旋","authors":"Myeonghyeon Kim, Junhwan Kwon, Tenzin Rabga, Yong-il Shin","doi":"10.1088/2632-2153/ad03ad","DOIUrl":null,"url":null,"abstract":"Abstract Quantum vortices in atomic Bose-Einstein condensates (BECs) are topological defects characterized by quantized circulation of particles around them. In experimental studies, vortices are commonly detected by time-of-flight imaging, where their density-depleted cores are enlarged. In this work, we describe a machine learning-based method for detecting vortices in experimental BEC images, particularly focusing on turbulent condensates containing irregularly distributed vortices. Our approach employs a convolutional neural network (CNN) trained solely on synthetic simulated images, eliminating the need for manual labeling of the vortex positions as ground truth. We find that the CNN achieves accurate vortex detection in real experimental images, thereby facilitating analysis of large experimental datasets without being constrained by specific experimental conditions. This novel approach represents a significant advancement in studying quantum vortex dynamics and streamlines the analysis process in the investigation of turbulent BECs.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"80 1","pages":"0"},"PeriodicalIF":6.3000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vortex detection in atomic Bose--Einstein condensates using neural networks trained on synthetic images\",\"authors\":\"Myeonghyeon Kim, Junhwan Kwon, Tenzin Rabga, Yong-il Shin\",\"doi\":\"10.1088/2632-2153/ad03ad\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Quantum vortices in atomic Bose-Einstein condensates (BECs) are topological defects characterized by quantized circulation of particles around them. In experimental studies, vortices are commonly detected by time-of-flight imaging, where their density-depleted cores are enlarged. In this work, we describe a machine learning-based method for detecting vortices in experimental BEC images, particularly focusing on turbulent condensates containing irregularly distributed vortices. Our approach employs a convolutional neural network (CNN) trained solely on synthetic simulated images, eliminating the need for manual labeling of the vortex positions as ground truth. We find that the CNN achieves accurate vortex detection in real experimental images, thereby facilitating analysis of large experimental datasets without being constrained by specific experimental conditions. This novel approach represents a significant advancement in studying quantum vortex dynamics and streamlines the analysis process in the investigation of turbulent BECs.\",\"PeriodicalId\":33757,\"journal\":{\"name\":\"Machine Learning Science and Technology\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ad03ad\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad03ad","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Vortex detection in atomic Bose--Einstein condensates using neural networks trained on synthetic images
Abstract Quantum vortices in atomic Bose-Einstein condensates (BECs) are topological defects characterized by quantized circulation of particles around them. In experimental studies, vortices are commonly detected by time-of-flight imaging, where their density-depleted cores are enlarged. In this work, we describe a machine learning-based method for detecting vortices in experimental BEC images, particularly focusing on turbulent condensates containing irregularly distributed vortices. Our approach employs a convolutional neural network (CNN) trained solely on synthetic simulated images, eliminating the need for manual labeling of the vortex positions as ground truth. We find that the CNN achieves accurate vortex detection in real experimental images, thereby facilitating analysis of large experimental datasets without being constrained by specific experimental conditions. This novel approach represents a significant advancement in studying quantum vortex dynamics and streamlines the analysis process in the investigation of turbulent BECs.
期刊介绍:
Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.