Luís Roberto Cavalcanti da Silva, Thibério Pinho Costa Souza
{"title":"聚合物废弃物催化裂化生产燃料的经济可行性","authors":"Luís Roberto Cavalcanti da Silva, Thibério Pinho Costa Souza","doi":"10.51359/2238-6211.2023.258488","DOIUrl":null,"url":null,"abstract":"Plastic waste represents a major environmental concern, as it does not degrade in the environment and is constantly discarded. The types of polymers most used in the world are polyethylene and polypropylene, mainly for the production of packaging and, therefore, are the most discarded plastic waste in the environment. Some efforts are being applied to mitigate this situation, such as mechanical recycling, which transforms plastic waste into other products. But polymer cracking processes are promising alternatives, converting waste into lightweight materials that can be turned into commercial fuels. However, to be viable, these processes must consume as little resources as possible and, for this, feasibility experiments must be carried out to prove their application on a large scale and in small transformation units. This work presents a methodology for assembling a low-cost pyrolysis reactor to carry out the cracking of polymeric residues, and experiments were carried out with it, whose results showed the technical and economic viability of the described process, obtaining a rate of conversion of plastic into fuels of up to 96%, so it can be widely applied to reduce impacts caused by plastic disposal.","PeriodicalId":53283,"journal":{"name":"Revista de Geografia Recife","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Economic feasibility of catalytic cracking of polymer waste for fuel production\",\"authors\":\"Luís Roberto Cavalcanti da Silva, Thibério Pinho Costa Souza\",\"doi\":\"10.51359/2238-6211.2023.258488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plastic waste represents a major environmental concern, as it does not degrade in the environment and is constantly discarded. The types of polymers most used in the world are polyethylene and polypropylene, mainly for the production of packaging and, therefore, are the most discarded plastic waste in the environment. Some efforts are being applied to mitigate this situation, such as mechanical recycling, which transforms plastic waste into other products. But polymer cracking processes are promising alternatives, converting waste into lightweight materials that can be turned into commercial fuels. However, to be viable, these processes must consume as little resources as possible and, for this, feasibility experiments must be carried out to prove their application on a large scale and in small transformation units. This work presents a methodology for assembling a low-cost pyrolysis reactor to carry out the cracking of polymeric residues, and experiments were carried out with it, whose results showed the technical and economic viability of the described process, obtaining a rate of conversion of plastic into fuels of up to 96%, so it can be widely applied to reduce impacts caused by plastic disposal.\",\"PeriodicalId\":53283,\"journal\":{\"name\":\"Revista de Geografia Recife\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de Geografia Recife\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51359/2238-6211.2023.258488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Geografia Recife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51359/2238-6211.2023.258488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Economic feasibility of catalytic cracking of polymer waste for fuel production
Plastic waste represents a major environmental concern, as it does not degrade in the environment and is constantly discarded. The types of polymers most used in the world are polyethylene and polypropylene, mainly for the production of packaging and, therefore, are the most discarded plastic waste in the environment. Some efforts are being applied to mitigate this situation, such as mechanical recycling, which transforms plastic waste into other products. But polymer cracking processes are promising alternatives, converting waste into lightweight materials that can be turned into commercial fuels. However, to be viable, these processes must consume as little resources as possible and, for this, feasibility experiments must be carried out to prove their application on a large scale and in small transformation units. This work presents a methodology for assembling a low-cost pyrolysis reactor to carry out the cracking of polymeric residues, and experiments were carried out with it, whose results showed the technical and economic viability of the described process, obtaining a rate of conversion of plastic into fuels of up to 96%, so it can be widely applied to reduce impacts caused by plastic disposal.