Alberto Ciampaglia, Dario Fiumarella, Carlo Boursier Niutta, Raffaele Ciardiello, Giovanni Belingardi
{"title":"基于物理数据的折纸复合管防撞设计方法","authors":"Alberto Ciampaglia, Dario Fiumarella, Carlo Boursier Niutta, Raffaele Ciardiello, Giovanni Belingardi","doi":"10.1007/s10999-023-09685-2","DOIUrl":null,"url":null,"abstract":"<div><p>A novel method based on a physics informed data driven model is developed to design an origami composite crash tube. The structure consists of two axially stacked basic components, called modules. Each module presents lower and upper square sections with an octagonal section in the middle. The parameters of the octagonal cross-section and the height of each module are optimized to maximize the energy absorption of the tube when subjected to an axial impact. In contrast to standard surrogate modelling techniques, whose accuracy only depends on the amount of available data, a Physics-informed Neural Network (PINN) scheme is adopted to correlate the crushing response of the single modules to that of the whole origami tube, constraining the data driven method to physically consistent predictions. The PINN is first trained on the results obtained with an experimentally validated Finite Element model and then used to optimize the structure. Results show that the PINN can accurately predict the crushing response of the origami tube, while consistently reducing the computational effort required to explore the whole design domain. Also, the comparison with a standard Feed Forward Neural Network (FFNN) shows that the PINN scheme leads to more accurate results.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"20 3","pages":"445 - 462"},"PeriodicalIF":2.7000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10999-023-09685-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Physics based data driven method for the crashworthiness design of origami composite tubes\",\"authors\":\"Alberto Ciampaglia, Dario Fiumarella, Carlo Boursier Niutta, Raffaele Ciardiello, Giovanni Belingardi\",\"doi\":\"10.1007/s10999-023-09685-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel method based on a physics informed data driven model is developed to design an origami composite crash tube. The structure consists of two axially stacked basic components, called modules. Each module presents lower and upper square sections with an octagonal section in the middle. The parameters of the octagonal cross-section and the height of each module are optimized to maximize the energy absorption of the tube when subjected to an axial impact. In contrast to standard surrogate modelling techniques, whose accuracy only depends on the amount of available data, a Physics-informed Neural Network (PINN) scheme is adopted to correlate the crushing response of the single modules to that of the whole origami tube, constraining the data driven method to physically consistent predictions. The PINN is first trained on the results obtained with an experimentally validated Finite Element model and then used to optimize the structure. Results show that the PINN can accurately predict the crushing response of the origami tube, while consistently reducing the computational effort required to explore the whole design domain. Also, the comparison with a standard Feed Forward Neural Network (FFNN) shows that the PINN scheme leads to more accurate results.</p></div>\",\"PeriodicalId\":593,\"journal\":{\"name\":\"International Journal of Mechanics and Materials in Design\",\"volume\":\"20 3\",\"pages\":\"445 - 462\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10999-023-09685-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics and Materials in Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10999-023-09685-2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-023-09685-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Physics based data driven method for the crashworthiness design of origami composite tubes
A novel method based on a physics informed data driven model is developed to design an origami composite crash tube. The structure consists of two axially stacked basic components, called modules. Each module presents lower and upper square sections with an octagonal section in the middle. The parameters of the octagonal cross-section and the height of each module are optimized to maximize the energy absorption of the tube when subjected to an axial impact. In contrast to standard surrogate modelling techniques, whose accuracy only depends on the amount of available data, a Physics-informed Neural Network (PINN) scheme is adopted to correlate the crushing response of the single modules to that of the whole origami tube, constraining the data driven method to physically consistent predictions. The PINN is first trained on the results obtained with an experimentally validated Finite Element model and then used to optimize the structure. Results show that the PINN can accurately predict the crushing response of the origami tube, while consistently reducing the computational effort required to explore the whole design domain. Also, the comparison with a standard Feed Forward Neural Network (FFNN) shows that the PINN scheme leads to more accurate results.
期刊介绍:
It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design.
Analytical synopsis of contents:
The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design:
Intelligent Design:
Nano-engineering and Nano-science in Design;
Smart Materials and Adaptive Structures in Design;
Mechanism(s) Design;
Design against Failure;
Design for Manufacturing;
Design of Ultralight Structures;
Design for a Clean Environment;
Impact and Crashworthiness;
Microelectronic Packaging Systems.
Advanced Materials in Design:
Newly Engineered Materials;
Smart Materials and Adaptive Structures;
Micromechanical Modelling of Composites;
Damage Characterisation of Advanced/Traditional Materials;
Alternative Use of Traditional Materials in Design;
Functionally Graded Materials;
Failure Analysis: Fatigue and Fracture;
Multiscale Modelling Concepts and Methodology;
Interfaces, interfacial properties and characterisation.
Design Analysis and Optimisation:
Shape and Topology Optimisation;
Structural Optimisation;
Optimisation Algorithms in Design;
Nonlinear Mechanics in Design;
Novel Numerical Tools in Design;
Geometric Modelling and CAD Tools in Design;
FEM, BEM and Hybrid Methods;
Integrated Computer Aided Design;
Computational Failure Analysis;
Coupled Thermo-Electro-Mechanical Designs.