自适应C-V2X资源管理的强化学习方法

IF 2.8 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Future Internet Pub Date : 2023-10-15 DOI:10.3390/fi15100339
Teguh Indra Bayu, Yung-Fa Huang, Jeang-Kuo Chen
{"title":"自适应C-V2X资源管理的强化学习方法","authors":"Teguh Indra Bayu, Yung-Fa Huang, Jeang-Kuo Chen","doi":"10.3390/fi15100339","DOIUrl":null,"url":null,"abstract":"The modulation coding scheme (MCS) index is the essential configuration parameter in cellular vehicle-to-everything (C-V2X) communication. As referenced by the 3rd Generation Partnership Project (3GPP), the MCS index will dictate the transport block size (TBS) index, which will affect the size of transport blocks and the number of physical resource blocks. These numbers are crucial in the C-V2X resource management since it is also bound to the transmission power used in the system. To the authors’ knowledge, this particular area of research has not been previously investigated. Ultimately, this research establishes the fundamental principles for future studies seeking to use the MCS adaptability in many contexts. In this work, we proposed the application of the reinforcement learning (RL) algorithm, as we used the Q-learning approach to adaptively change the MCS index according to the current environmental states. The simulation results showed that our proposed RL approach outperformed the static MCS index and was able to attain stability in a short number of events.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"5 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement Learning Approach for Adaptive C-V2X Resource Management\",\"authors\":\"Teguh Indra Bayu, Yung-Fa Huang, Jeang-Kuo Chen\",\"doi\":\"10.3390/fi15100339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The modulation coding scheme (MCS) index is the essential configuration parameter in cellular vehicle-to-everything (C-V2X) communication. As referenced by the 3rd Generation Partnership Project (3GPP), the MCS index will dictate the transport block size (TBS) index, which will affect the size of transport blocks and the number of physical resource blocks. These numbers are crucial in the C-V2X resource management since it is also bound to the transmission power used in the system. To the authors’ knowledge, this particular area of research has not been previously investigated. Ultimately, this research establishes the fundamental principles for future studies seeking to use the MCS adaptability in many contexts. In this work, we proposed the application of the reinforcement learning (RL) algorithm, as we used the Q-learning approach to adaptively change the MCS index according to the current environmental states. The simulation results showed that our proposed RL approach outperformed the static MCS index and was able to attain stability in a short number of events.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi15100339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi15100339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

调制编码方案(MCS)索引是蜂窝车联网(C-V2X)通信中必不可少的配置参数。根据第三代合作伙伴计划(3GPP), MCS索引将决定传输块大小(TBS)索引,这将影响传输块的大小和物理资源块的数量。这些数字在C-V2X资源管理中至关重要,因为它也与系统中使用的传输功率有关。据作者所知,这一特定领域的研究以前没有被调查过。最后,本研究为未来在多种情境下使用MCS适应性的研究奠定了基本原则。在这项工作中,我们提出了强化学习(RL)算法的应用,因为我们使用q -学习方法根据当前环境状态自适应地改变MCS指数。仿真结果表明,我们提出的RL方法优于静态MCS指数,并且能够在短数量的事件中获得稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reinforcement Learning Approach for Adaptive C-V2X Resource Management
The modulation coding scheme (MCS) index is the essential configuration parameter in cellular vehicle-to-everything (C-V2X) communication. As referenced by the 3rd Generation Partnership Project (3GPP), the MCS index will dictate the transport block size (TBS) index, which will affect the size of transport blocks and the number of physical resource blocks. These numbers are crucial in the C-V2X resource management since it is also bound to the transmission power used in the system. To the authors’ knowledge, this particular area of research has not been previously investigated. Ultimately, this research establishes the fundamental principles for future studies seeking to use the MCS adaptability in many contexts. In this work, we proposed the application of the reinforcement learning (RL) algorithm, as we used the Q-learning approach to adaptively change the MCS index according to the current environmental states. The simulation results showed that our proposed RL approach outperformed the static MCS index and was able to attain stability in a short number of events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Future Internet
Future Internet Computer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍: Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.
期刊最新文献
Controllable Queuing System with Elastic Traffic and Signals for Resource Capacity Planning in 5G Network Slicing Internet-of-Things Traffic Analysis and Device Identification Based on Two-Stage Clustering in Smart Home Environments Resource Indexing and Querying in Large Connected Environments An Analysis of Methods and Metrics for Task Scheduling in Fog Computing Evaluating Embeddings from Pre-Trained Language Models and Knowledge Graphs for Educational Content Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1