Jere Rusanen, Alok Sethi, Nuutti Tervo, Veeti Kiuru, Timo Rahkonen, Aarno Pärssinen, Janne P. Aikio
{"title":"22 nm CMOS FDSOI的ka波段叠置和伪差分正交负载调制平衡功率放大器","authors":"Jere Rusanen, Alok Sethi, Nuutti Tervo, Veeti Kiuru, Timo Rahkonen, Aarno Pärssinen, Janne P. Aikio","doi":"10.1017/s1759078723001137","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents an integrated power amplifier (PA) following the orthogonal load-modulated balanced amplifier (OLMBA) topology. The fixed-phase prototype in this paper is implemented with 22 nm complementary metal oxide semiconductor (CMOS) fully depleted silicon-on-insulator (FDSOI) process. The proposed PA operates at 26 GHz frequency range, where it achieves 19.5 dBm output power, 16.6 dB gain, 15.7% power added efficiency, and 18.3 dBm output 1-dB compression point ( $P_{\\rm 1\\,dB}$ ). The PA is also tested with high dynamic range modulated signals, and it achieves, respectively, 11.4 dBm and 4.9 dBm average output power ( P avg ) with 100 MHz and 400 MHz 64-QAM third-generation partnership project/new radio frequency range 2 signals, and 14 dBm P avg with 0.6 Gb/s (120 MHz) single carrier 64-QAM signal, measured at 26 GHz and using −28 dBc adjacent channel leakage ratio and −21.9 dB (8%) error vector magnitude as threshold values. The proposed OLMBA is also compared to a stand-alone quadrature-balanced PA. Modulated measurements show that the stand-alone quadrature-balanced PA has better linearity in deep back-off, but the OLMBA has better efficiency.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"24 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ka-band stacked and pseudo-differential orthogonal load-modulated balanced power amplifier in 22 nm CMOS FDSOI\",\"authors\":\"Jere Rusanen, Alok Sethi, Nuutti Tervo, Veeti Kiuru, Timo Rahkonen, Aarno Pärssinen, Janne P. Aikio\",\"doi\":\"10.1017/s1759078723001137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents an integrated power amplifier (PA) following the orthogonal load-modulated balanced amplifier (OLMBA) topology. The fixed-phase prototype in this paper is implemented with 22 nm complementary metal oxide semiconductor (CMOS) fully depleted silicon-on-insulator (FDSOI) process. The proposed PA operates at 26 GHz frequency range, where it achieves 19.5 dBm output power, 16.6 dB gain, 15.7% power added efficiency, and 18.3 dBm output 1-dB compression point ( $P_{\\\\rm 1\\\\,dB}$ ). The PA is also tested with high dynamic range modulated signals, and it achieves, respectively, 11.4 dBm and 4.9 dBm average output power ( P avg ) with 100 MHz and 400 MHz 64-QAM third-generation partnership project/new radio frequency range 2 signals, and 14 dBm P avg with 0.6 Gb/s (120 MHz) single carrier 64-QAM signal, measured at 26 GHz and using −28 dBc adjacent channel leakage ratio and −21.9 dB (8%) error vector magnitude as threshold values. The proposed OLMBA is also compared to a stand-alone quadrature-balanced PA. Modulated measurements show that the stand-alone quadrature-balanced PA has better linearity in deep back-off, but the OLMBA has better efficiency.\",\"PeriodicalId\":49052,\"journal\":{\"name\":\"International Journal of Microwave and Wireless Technologies\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Microwave and Wireless Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s1759078723001137\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave and Wireless Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1759078723001137","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Ka-band stacked and pseudo-differential orthogonal load-modulated balanced power amplifier in 22 nm CMOS FDSOI
Abstract This paper presents an integrated power amplifier (PA) following the orthogonal load-modulated balanced amplifier (OLMBA) topology. The fixed-phase prototype in this paper is implemented with 22 nm complementary metal oxide semiconductor (CMOS) fully depleted silicon-on-insulator (FDSOI) process. The proposed PA operates at 26 GHz frequency range, where it achieves 19.5 dBm output power, 16.6 dB gain, 15.7% power added efficiency, and 18.3 dBm output 1-dB compression point ( $P_{\rm 1\,dB}$ ). The PA is also tested with high dynamic range modulated signals, and it achieves, respectively, 11.4 dBm and 4.9 dBm average output power ( P avg ) with 100 MHz and 400 MHz 64-QAM third-generation partnership project/new radio frequency range 2 signals, and 14 dBm P avg with 0.6 Gb/s (120 MHz) single carrier 64-QAM signal, measured at 26 GHz and using −28 dBc adjacent channel leakage ratio and −21.9 dB (8%) error vector magnitude as threshold values. The proposed OLMBA is also compared to a stand-alone quadrature-balanced PA. Modulated measurements show that the stand-alone quadrature-balanced PA has better linearity in deep back-off, but the OLMBA has better efficiency.
期刊介绍:
The prime objective of the International Journal of Microwave and Wireless Technologies is to enhance the communication between microwave engineers throughout the world. It is therefore interdisciplinary and application oriented, providing a platform for the microwave industry. Coverage includes: applied electromagnetic field theory (antennas, transmission lines and waveguides), components (passive structures and semiconductor device technologies), analogue and mixed-signal circuits, systems, optical-microwave interactions, electromagnetic compatibility, industrial applications, biological effects and medical applications.