{"title":"禽肉废弃物与棕榈油厂废水共消化生物甲烷化工艺参数优化","authors":"Emmanuel Ikechukwu Ugwu , Juliana Heloisa Pinê Américo-Pinheiro , Light Ihenna Nwobia , Vineet Kumar , Eberechukwu Laura Ikechukwu , Egba Chinonso Victor","doi":"10.1016/j.clce.2022.100033","DOIUrl":null,"url":null,"abstract":"<div><p>Poultry wastes (PW) and palm oil mill effluents (POME) are thought to be promising starting materials for biogas production. In the present study, the optimization of biomethanization process from co-digested (PW) and POME was investigated. To assist digestion, samples were sun-dried, ground, and mixed with water to form slurry. The central composite design was used in the experimental design, while the desirability function was applied in the process optimization of the co-digestion process. The interactive effects of temperature, pH, and hydraulic retention time were equally studied. The results showed a high co-efficient of determination (R<sup>2</sup>) value of 0.9920. Also, the predicted and experimental values obtained were 4377.71 ml and 4379.01 respectively, while the optimum conditions obtained were 45 °C, 8.00 and 15 days for temperature, pH, and hydraulic retention time, respectively. This finding shows that the proposed technique is effective and robust in predicting biomethane generation from co-digested POME and PW.</p></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"3 ","pages":"Article 100033"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772782322000316/pdfft?md5=cf22faf725231ae81ed514a9e743f54f&pid=1-s2.0-S2772782322000316-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimization of parameters in biomethanization process with co-digested poultry wastes and palm oil mill effluents\",\"authors\":\"Emmanuel Ikechukwu Ugwu , Juliana Heloisa Pinê Américo-Pinheiro , Light Ihenna Nwobia , Vineet Kumar , Eberechukwu Laura Ikechukwu , Egba Chinonso Victor\",\"doi\":\"10.1016/j.clce.2022.100033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Poultry wastes (PW) and palm oil mill effluents (POME) are thought to be promising starting materials for biogas production. In the present study, the optimization of biomethanization process from co-digested (PW) and POME was investigated. To assist digestion, samples were sun-dried, ground, and mixed with water to form slurry. The central composite design was used in the experimental design, while the desirability function was applied in the process optimization of the co-digestion process. The interactive effects of temperature, pH, and hydraulic retention time were equally studied. The results showed a high co-efficient of determination (R<sup>2</sup>) value of 0.9920. Also, the predicted and experimental values obtained were 4377.71 ml and 4379.01 respectively, while the optimum conditions obtained were 45 °C, 8.00 and 15 days for temperature, pH, and hydraulic retention time, respectively. This finding shows that the proposed technique is effective and robust in predicting biomethane generation from co-digested POME and PW.</p></div>\",\"PeriodicalId\":100251,\"journal\":{\"name\":\"Cleaner Chemical Engineering\",\"volume\":\"3 \",\"pages\":\"Article 100033\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772782322000316/pdfft?md5=cf22faf725231ae81ed514a9e743f54f&pid=1-s2.0-S2772782322000316-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772782322000316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772782322000316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of parameters in biomethanization process with co-digested poultry wastes and palm oil mill effluents
Poultry wastes (PW) and palm oil mill effluents (POME) are thought to be promising starting materials for biogas production. In the present study, the optimization of biomethanization process from co-digested (PW) and POME was investigated. To assist digestion, samples were sun-dried, ground, and mixed with water to form slurry. The central composite design was used in the experimental design, while the desirability function was applied in the process optimization of the co-digestion process. The interactive effects of temperature, pH, and hydraulic retention time were equally studied. The results showed a high co-efficient of determination (R2) value of 0.9920. Also, the predicted and experimental values obtained were 4377.71 ml and 4379.01 respectively, while the optimum conditions obtained were 45 °C, 8.00 and 15 days for temperature, pH, and hydraulic retention time, respectively. This finding shows that the proposed technique is effective and robust in predicting biomethane generation from co-digested POME and PW.