骆驼瘤胃中具有木质纤维素分解能力的新型真菌西多曲霉C6d的基因组分析和CAZy库

IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Electronic Journal of Biotechnology Pub Date : 2022-09-01 DOI:10.1016/j.ejbt.2022.06.004
Nilam J. Tulsani , Subhash J. Jakhesara , Ankit T. Hinsu , Basanti Jyotsana , Nishant A. Dafale , Niteen V. Patil , Hemant J. Purohit , Chaitanya G. Joshi
{"title":"骆驼瘤胃中具有木质纤维素分解能力的新型真菌西多曲霉C6d的基因组分析和CAZy库","authors":"Nilam J. Tulsani ,&nbsp;Subhash J. Jakhesara ,&nbsp;Ankit T. Hinsu ,&nbsp;Basanti Jyotsana ,&nbsp;Nishant A. Dafale ,&nbsp;Niteen V. Patil ,&nbsp;Hemant J. Purohit ,&nbsp;Chaitanya G. Joshi","doi":"10.1016/j.ejbt.2022.06.004","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Camels are known for their survival under harsh and nutrient-deficient climates. Camel rumen ecosystem presents a unique opportunity to study the ruminal microbes helping the camel in this task. The genus <em>Aspergillus</em> is the extensively studied filamentous fungus due to its ability to secret industrially important enzymes. The present study was aimed to isolate and characterize microbes with lignocellulolytic capacity from camel rumen.</p></div><div><h3>Results</h3><p>The fungal isolate <em>Aspergillus sydowii</em> C6d, isolated from camel rumen, was sequenced and analysed for its CAZyme content responsible for lignocellulose degradation. The C6d isolate was evaluated for its capacity to produce cellulase, pectinase, xylanase, and amylase with their respective assays and further evaluated for their optimum pH. The genome sequencing and assembly resulted in 32.27 Mb of genome size with a GC % of 50.59. The CAZyme analysis revealed that the C6d produced 543 polysaccharide-degrading CAZymes amongst which, 148 CAZymes were potentially involved in lignocellulose degradation. The genomic comparison of the C6d with 30 commonly used lignocellulolytic fungi (white rot, brown rot, and soft rot fungus) showed the enrichment of cellulolytic and pectinolytic CAZymes in C6d genome as compared to others. The saccharification of lignocellulosic substrate wheat straw resulted in the release of 50.85% of reducing sugars.</p></div><div><h3>Conclusions</h3><p>The study provides important insights into the CAZymes responsible for lignocellulolytic ability in the novel fungus <em>Aspergillus sydowii</em> C6d isolated from camel rumen and presents a valuable source of CAZymes to be further evaluated for potential biotechnological applications.</p><p><strong>How to cite:</strong> Tulsani NJ, Jakhesara SJ, Hinsu AT, et al. Genome analysis and CAZy repertoire of a novel fungus <em>Aspergillus sydowii</em> C6d with lignocellulolytic ability isolated from camel rumen. Electron J Biotechnol 2022;59. https://doi.org/10.1016/j.ejbt.2022.06.004.</p></div>","PeriodicalId":11529,"journal":{"name":"Electronic Journal of Biotechnology","volume":"59 ","pages":"Pages 36-45"},"PeriodicalIF":2.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0717345822000264/pdfft?md5=9cc7d59cabcac2aa85eca3b7feb67cf0&pid=1-s2.0-S0717345822000264-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Genome analysis and CAZy repertoire of a novel fungus Aspergillus sydowii C6d with lignocellulolytic ability isolated from camel rumen\",\"authors\":\"Nilam J. Tulsani ,&nbsp;Subhash J. Jakhesara ,&nbsp;Ankit T. Hinsu ,&nbsp;Basanti Jyotsana ,&nbsp;Nishant A. Dafale ,&nbsp;Niteen V. Patil ,&nbsp;Hemant J. Purohit ,&nbsp;Chaitanya G. Joshi\",\"doi\":\"10.1016/j.ejbt.2022.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Camels are known for their survival under harsh and nutrient-deficient climates. Camel rumen ecosystem presents a unique opportunity to study the ruminal microbes helping the camel in this task. The genus <em>Aspergillus</em> is the extensively studied filamentous fungus due to its ability to secret industrially important enzymes. The present study was aimed to isolate and characterize microbes with lignocellulolytic capacity from camel rumen.</p></div><div><h3>Results</h3><p>The fungal isolate <em>Aspergillus sydowii</em> C6d, isolated from camel rumen, was sequenced and analysed for its CAZyme content responsible for lignocellulose degradation. The C6d isolate was evaluated for its capacity to produce cellulase, pectinase, xylanase, and amylase with their respective assays and further evaluated for their optimum pH. The genome sequencing and assembly resulted in 32.27 Mb of genome size with a GC % of 50.59. The CAZyme analysis revealed that the C6d produced 543 polysaccharide-degrading CAZymes amongst which, 148 CAZymes were potentially involved in lignocellulose degradation. The genomic comparison of the C6d with 30 commonly used lignocellulolytic fungi (white rot, brown rot, and soft rot fungus) showed the enrichment of cellulolytic and pectinolytic CAZymes in C6d genome as compared to others. The saccharification of lignocellulosic substrate wheat straw resulted in the release of 50.85% of reducing sugars.</p></div><div><h3>Conclusions</h3><p>The study provides important insights into the CAZymes responsible for lignocellulolytic ability in the novel fungus <em>Aspergillus sydowii</em> C6d isolated from camel rumen and presents a valuable source of CAZymes to be further evaluated for potential biotechnological applications.</p><p><strong>How to cite:</strong> Tulsani NJ, Jakhesara SJ, Hinsu AT, et al. Genome analysis and CAZy repertoire of a novel fungus <em>Aspergillus sydowii</em> C6d with lignocellulolytic ability isolated from camel rumen. Electron J Biotechnol 2022;59. https://doi.org/10.1016/j.ejbt.2022.06.004.</p></div>\",\"PeriodicalId\":11529,\"journal\":{\"name\":\"Electronic Journal of Biotechnology\",\"volume\":\"59 \",\"pages\":\"Pages 36-45\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0717345822000264/pdfft?md5=9cc7d59cabcac2aa85eca3b7feb67cf0&pid=1-s2.0-S0717345822000264-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0717345822000264\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0717345822000264","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

骆驼以在恶劣和缺乏营养的气候下生存而闻名。骆驼瘤胃生态系统为研究帮助骆驼完成这项任务的瘤胃微生物提供了一个独特的机会。曲霉属是被广泛研究的丝状真菌,因为它能够分泌工业上重要的酶。本研究旨在从骆驼瘤胃中分离和鉴定具有木质纤维素分解能力的微生物。结果对从骆驼瘤胃分离得到的sydowii曲霉C6d进行了测序,并对其降解木质纤维素的酶酶含量进行了分析。通过对C6d分离物产生纤维素酶、果胶酶、木聚糖酶和淀粉酶的能力进行评估,并进一步评估其最佳ph值。基因组测序和组装结果显示,C6d分离物的基因组大小为32.27 Mb, GC %为50.59。酶酶分析表明,C6d产生543种多糖降解酶,其中148种酶可能参与木质纤维素的降解。将C6d与30种常用的木质纤维素分解真菌(白腐菌、褐腐菌和软腐菌)进行基因组比较,发现C6d基因组中纤维素分解酶和果胶分解酶富集。木质纤维素底物麦秸的糖化作用导致50.85%的还原糖释放。结论本研究为从骆驼瘤胃分离的新型真菌sydowii曲霉C6d中分解木质纤维素的酶提供了重要的见解,并为进一步评估潜在的生物技术应用提供了有价值的酶来源。如何引用:Tulsani NJ, Jakhesara SJ, Hinsu AT等。骆驼瘤胃中具有木质纤维素分解能力的新型真菌西多曲霉C6d的基因组分析和CAZy库。中国生物医学工程学报(英文版);2011;https://doi.org/10.1016/j.ejbt.2022.06.004。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genome analysis and CAZy repertoire of a novel fungus Aspergillus sydowii C6d with lignocellulolytic ability isolated from camel rumen

Background

Camels are known for their survival under harsh and nutrient-deficient climates. Camel rumen ecosystem presents a unique opportunity to study the ruminal microbes helping the camel in this task. The genus Aspergillus is the extensively studied filamentous fungus due to its ability to secret industrially important enzymes. The present study was aimed to isolate and characterize microbes with lignocellulolytic capacity from camel rumen.

Results

The fungal isolate Aspergillus sydowii C6d, isolated from camel rumen, was sequenced and analysed for its CAZyme content responsible for lignocellulose degradation. The C6d isolate was evaluated for its capacity to produce cellulase, pectinase, xylanase, and amylase with their respective assays and further evaluated for their optimum pH. The genome sequencing and assembly resulted in 32.27 Mb of genome size with a GC % of 50.59. The CAZyme analysis revealed that the C6d produced 543 polysaccharide-degrading CAZymes amongst which, 148 CAZymes were potentially involved in lignocellulose degradation. The genomic comparison of the C6d with 30 commonly used lignocellulolytic fungi (white rot, brown rot, and soft rot fungus) showed the enrichment of cellulolytic and pectinolytic CAZymes in C6d genome as compared to others. The saccharification of lignocellulosic substrate wheat straw resulted in the release of 50.85% of reducing sugars.

Conclusions

The study provides important insights into the CAZymes responsible for lignocellulolytic ability in the novel fungus Aspergillus sydowii C6d isolated from camel rumen and presents a valuable source of CAZymes to be further evaluated for potential biotechnological applications.

How to cite: Tulsani NJ, Jakhesara SJ, Hinsu AT, et al. Genome analysis and CAZy repertoire of a novel fungus Aspergillus sydowii C6d with lignocellulolytic ability isolated from camel rumen. Electron J Biotechnol 2022;59. https://doi.org/10.1016/j.ejbt.2022.06.004.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Biotechnology
Electronic Journal of Biotechnology 工程技术-生物工程与应用微生物
CiteScore
5.60
自引率
0.00%
发文量
50
审稿时长
2 months
期刊介绍: Electronic Journal of Biotechnology is an international scientific electronic journal, which publishes papers from all areas related to Biotechnology. It covers from molecular biology and the chemistry of biological processes to aquatic and earth environmental aspects, computational applications, policy and ethical issues directly related to Biotechnology. The journal provides an effective way to publish research and review articles and short communications, video material, animation sequences and 3D are also accepted to support and enhance articles. The articles will be examined by a scientific committee and anonymous evaluators and published every two months in HTML and PDF formats (January 15th , March 15th, May 15th, July 15th, September 15th, November 15th). The following areas are covered in the Journal: • Animal Biotechnology • Biofilms • Bioinformatics • Biomedicine • Biopolicies of International Cooperation • Biosafety • Biotechnology Industry • Biotechnology of Human Disorders • Chemical Engineering • Environmental Biotechnology • Food Biotechnology • Marine Biotechnology • Microbial Biotechnology • Molecular Biology and Genetics •Nanobiotechnology • Omics • Plant Biotechnology • Process Biotechnology • Process Chemistry and Technology • Tissue Engineering
期刊最新文献
Development of a chemically defined medium for Yarrowia yeasts using a strategy of biological mimicry Evaluation of high-value bioproducts production by marine endophytic fungus Arthrinium sp. FAKSA 10 under solid state fermentation using agro-industrial wastes Antibiotic evaluation of the nanocomposites IONs-MWCNTs-Pc and IONs-GO-Pc encapsulated in the biocompatible hydrogel poly(VCL-co-PEGDA) based on photodynamic effect The significance of chemical transfection/transduction enhancers in promoting the viral vectors-assisted gene delivery approaches: A focus on potentials for inherited retinal diseases Enhancing Lactobacillus plantarum viability using novel chitosan-alginate-pectin microcapsules: Effects on gastrointestinal survival, weight management, and metabolic health
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1