基于评分规则的多维客观先验分布

Pub Date : 2023-11-18 DOI:10.1016/j.jspi.2023.106122
Isadora Antoniano-Villalobos , Cristiano Villa , Stephen G. Walker
{"title":"基于评分规则的多维客观先验分布","authors":"Isadora Antoniano-Villalobos ,&nbsp;Cristiano Villa ,&nbsp;Stephen G. Walker","doi":"10.1016/j.jspi.2023.106122","DOIUrl":null,"url":null,"abstract":"<div><p>The construction of objective priors is, at best, challenging for multidimensional parameter spaces. A common practice is to assume independence and set up the joint prior as the product of marginal distributions obtained via “standard” objective methods, such as Jeffreys or reference priors. However, the assumption of independence a priori is not always reasonable, and whether it can be viewed as strictly objective is still open to discussion. In this paper, by extending a previously proposed objective approach based on scoring rules for the one dimensional case, we propose a novel objective prior for multidimensional parameter spaces which yields a dependence structure. The proposed prior has the appealing property of being proper and does not depend on the chosen model; only on the parameter space considered.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multidimensional objective prior distribution from a scoring rule\",\"authors\":\"Isadora Antoniano-Villalobos ,&nbsp;Cristiano Villa ,&nbsp;Stephen G. Walker\",\"doi\":\"10.1016/j.jspi.2023.106122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The construction of objective priors is, at best, challenging for multidimensional parameter spaces. A common practice is to assume independence and set up the joint prior as the product of marginal distributions obtained via “standard” objective methods, such as Jeffreys or reference priors. However, the assumption of independence a priori is not always reasonable, and whether it can be viewed as strictly objective is still open to discussion. In this paper, by extending a previously proposed objective approach based on scoring rules for the one dimensional case, we propose a novel objective prior for multidimensional parameter spaces which yields a dependence structure. The proposed prior has the appealing property of being proper and does not depend on the chosen model; only on the parameter space considered.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375823000915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375823000915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于多维参数空间来说,客观先验的构建充其量是一项挑战。一种常见的做法是假设独立性,并将联合先验设置为通过“标准”客观方法(如Jeffreys或参考先验)获得的边际分布的乘积。然而,先验独立性的假设并不总是合理的,它是否可以被视为严格客观的,仍有待讨论。在本文中,通过扩展先前提出的基于评分规则的一维情况的客观方法,我们提出了一种新的多维参数空间的客观先验,它产生了一个依赖结构。所提出的先验具有适当的、不依赖于所选模型的吸引人的特性;只在考虑的参数空间上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
A multidimensional objective prior distribution from a scoring rule

The construction of objective priors is, at best, challenging for multidimensional parameter spaces. A common practice is to assume independence and set up the joint prior as the product of marginal distributions obtained via “standard” objective methods, such as Jeffreys or reference priors. However, the assumption of independence a priori is not always reasonable, and whether it can be viewed as strictly objective is still open to discussion. In this paper, by extending a previously proposed objective approach based on scoring rules for the one dimensional case, we propose a novel objective prior for multidimensional parameter spaces which yields a dependence structure. The proposed prior has the appealing property of being proper and does not depend on the chosen model; only on the parameter space considered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1