{"title":"基于相关性的时间序列分层聚类与空间约束","authors":"Alessia Benevento, Fabrizio Durante","doi":"10.1016/j.spasta.2023.100797","DOIUrl":null,"url":null,"abstract":"<div><p>Correlation-based hierarchical clustering methods for time series typically are based on a suitable dissimilarity matrix derived from pairwise measures of association. Here, this dissimilarity is modified in order to take into account the presence of spatial constraints. This modification exploits the geometric structure of the space of correlation matrices, i.e. their Riemannian manifold. Specifically, the temporal correlation matrix (based on van der Waerden coefficient) is aggregated to the spatial correlation matrix (obtained from a suitable Matérn correlation function) via a geodesic in the Riemannian manifold. Our approach is presented and discussed using simulated and real data, highlighting its main advantages and computational aspects.</p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211675323000726/pdfft?md5=3ee964aa120a14c44ecb0bd937ded35f&pid=1-s2.0-S2211675323000726-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Correlation-based hierarchical clustering of time series with spatial constraints\",\"authors\":\"Alessia Benevento, Fabrizio Durante\",\"doi\":\"10.1016/j.spasta.2023.100797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Correlation-based hierarchical clustering methods for time series typically are based on a suitable dissimilarity matrix derived from pairwise measures of association. Here, this dissimilarity is modified in order to take into account the presence of spatial constraints. This modification exploits the geometric structure of the space of correlation matrices, i.e. their Riemannian manifold. Specifically, the temporal correlation matrix (based on van der Waerden coefficient) is aggregated to the spatial correlation matrix (obtained from a suitable Matérn correlation function) via a geodesic in the Riemannian manifold. Our approach is presented and discussed using simulated and real data, highlighting its main advantages and computational aspects.</p></div>\",\"PeriodicalId\":48771,\"journal\":{\"name\":\"Spatial Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2211675323000726/pdfft?md5=3ee964aa120a14c44ecb0bd937ded35f&pid=1-s2.0-S2211675323000726-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211675323000726\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675323000726","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Correlation-based hierarchical clustering of time series with spatial constraints
Correlation-based hierarchical clustering methods for time series typically are based on a suitable dissimilarity matrix derived from pairwise measures of association. Here, this dissimilarity is modified in order to take into account the presence of spatial constraints. This modification exploits the geometric structure of the space of correlation matrices, i.e. their Riemannian manifold. Specifically, the temporal correlation matrix (based on van der Waerden coefficient) is aggregated to the spatial correlation matrix (obtained from a suitable Matérn correlation function) via a geodesic in the Riemannian manifold. Our approach is presented and discussed using simulated and real data, highlighting its main advantages and computational aspects.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.