Helmut Waldl , Werner G. Müller , Paula Camelia Trandafir
{"title":"同步克里金预测的标准和增量设计结构","authors":"Helmut Waldl , Werner G. Müller , Paula Camelia Trandafir","doi":"10.1016/j.spasta.2023.100798","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we further investigate the problem of selecting a set of design points for universal kriging, which is a widely used technique for spatial data analysis. Our goal is to select the design points in order to make simultaneous predictions of the random variable of interest at a finite number of unsampled locations with maximum precision. Specifically, we consider as response a correlated random field given by a linear model with an unknown parameter vector and a spatial error correlation structure. We propose a new design criterion that aims at simultaneously minimizing the variation of the prediction errors at various points. We also present various efficient techniques for incrementally building designs for that criterion scaling well for high dimensions. Thus the method is particularly suitable for big data applications in areas of spatial data analysis such as mining, hydrogeology, natural resource monitoring, and environmental sciences or equivalently for any computer simulation experiments. We have demonstrated the effectiveness of the proposed designs through two illustrative examples: one by simulation and another based on real data from Upper Austria.</p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"59 ","pages":"Article 100798"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211675323000738/pdfft?md5=c27c98bab7298c2716136f51bb37c898&pid=1-s2.0-S2211675323000738-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A criterion and incremental design construction for simultaneous kriging predictions\",\"authors\":\"Helmut Waldl , Werner G. Müller , Paula Camelia Trandafir\",\"doi\":\"10.1016/j.spasta.2023.100798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we further investigate the problem of selecting a set of design points for universal kriging, which is a widely used technique for spatial data analysis. Our goal is to select the design points in order to make simultaneous predictions of the random variable of interest at a finite number of unsampled locations with maximum precision. Specifically, we consider as response a correlated random field given by a linear model with an unknown parameter vector and a spatial error correlation structure. We propose a new design criterion that aims at simultaneously minimizing the variation of the prediction errors at various points. We also present various efficient techniques for incrementally building designs for that criterion scaling well for high dimensions. Thus the method is particularly suitable for big data applications in areas of spatial data analysis such as mining, hydrogeology, natural resource monitoring, and environmental sciences or equivalently for any computer simulation experiments. We have demonstrated the effectiveness of the proposed designs through two illustrative examples: one by simulation and another based on real data from Upper Austria.</p></div>\",\"PeriodicalId\":48771,\"journal\":{\"name\":\"Spatial Statistics\",\"volume\":\"59 \",\"pages\":\"Article 100798\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2211675323000738/pdfft?md5=c27c98bab7298c2716136f51bb37c898&pid=1-s2.0-S2211675323000738-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211675323000738\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675323000738","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
A criterion and incremental design construction for simultaneous kriging predictions
In this paper, we further investigate the problem of selecting a set of design points for universal kriging, which is a widely used technique for spatial data analysis. Our goal is to select the design points in order to make simultaneous predictions of the random variable of interest at a finite number of unsampled locations with maximum precision. Specifically, we consider as response a correlated random field given by a linear model with an unknown parameter vector and a spatial error correlation structure. We propose a new design criterion that aims at simultaneously minimizing the variation of the prediction errors at various points. We also present various efficient techniques for incrementally building designs for that criterion scaling well for high dimensions. Thus the method is particularly suitable for big data applications in areas of spatial data analysis such as mining, hydrogeology, natural resource monitoring, and environmental sciences or equivalently for any computer simulation experiments. We have demonstrated the effectiveness of the proposed designs through two illustrative examples: one by simulation and another based on real data from Upper Austria.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.