Robert Price, Holger Bausinger, Gino Longo, Ueli Weissen, Mark Cassidy, Jan G. Grolig, Andreas Mai, John T. S. Irvine
{"title":"商用热电联产装置新型共浸渍La0.20Sr0.25Ca0.45TiO3阳极的开发和全系统测试","authors":"Robert Price, Holger Bausinger, Gino Longo, Ueli Weissen, Mark Cassidy, Jan G. Grolig, Andreas Mai, John T. S. Irvine","doi":"10.1002/fuce.202300033","DOIUrl":null,"url":null,"abstract":"Over the past decade, the University of St Andrews and HEXIS AG have engaged in a highly successful collaborative project aiming to develop and upscale La<sub>0.20</sub>Sr<sub>0.25</sub>Ca<sub>0.45</sub>TiO<sub>3</sub> (LSCT<sub>A-</sub>) anode “backbone” microstructures, impregnated with Ce<sub>0.80</sub>Gd<sub>0.20</sub>O<sub>1.90</sub> (CG20) and metallic electrocatalysts, providing direct benefits in terms of performance and stability over the current state-of-the-art (SoA) Ni-based cermet solid oxide fuel cell (SOFC) anodes.","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"6 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and full system testing of novel co-impregnated La0.20Sr0.25Ca0.45TiO3 anodes for commercial combined heat and power units\",\"authors\":\"Robert Price, Holger Bausinger, Gino Longo, Ueli Weissen, Mark Cassidy, Jan G. Grolig, Andreas Mai, John T. S. Irvine\",\"doi\":\"10.1002/fuce.202300033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past decade, the University of St Andrews and HEXIS AG have engaged in a highly successful collaborative project aiming to develop and upscale La<sub>0.20</sub>Sr<sub>0.25</sub>Ca<sub>0.45</sub>TiO<sub>3</sub> (LSCT<sub>A-</sub>) anode “backbone” microstructures, impregnated with Ce<sub>0.80</sub>Gd<sub>0.20</sub>O<sub>1.90</sub> (CG20) and metallic electrocatalysts, providing direct benefits in terms of performance and stability over the current state-of-the-art (SoA) Ni-based cermet solid oxide fuel cell (SOFC) anodes.\",\"PeriodicalId\":12566,\"journal\":{\"name\":\"Fuel Cells\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Cells\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/fuce.202300033\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/fuce.202300033","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Development and full system testing of novel co-impregnated La0.20Sr0.25Ca0.45TiO3 anodes for commercial combined heat and power units
Over the past decade, the University of St Andrews and HEXIS AG have engaged in a highly successful collaborative project aiming to develop and upscale La0.20Sr0.25Ca0.45TiO3 (LSCTA-) anode “backbone” microstructures, impregnated with Ce0.80Gd0.20O1.90 (CG20) and metallic electrocatalysts, providing direct benefits in terms of performance and stability over the current state-of-the-art (SoA) Ni-based cermet solid oxide fuel cell (SOFC) anodes.
期刊介绍:
This journal is only available online from 2011 onwards.
Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables.
Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in
-chemistry-
materials science-
physics-
chemical engineering-
electrical engineering-
mechanical engineering-
is included.
Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies.
Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology.
Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.