氧化铁促进光化学氧还原成过氧化氢(H2O2)

EES catalysis Pub Date : 2023-11-24 DOI:10.1039/D3EY00256J
Thomas Freese, Jelmer T. Meijer, Maria B. Brands, Georgios Alachouzos, Marc C. A. Stuart, Rafael Tarozo, Dominic Gerlach, Joost Smits, Petra Rudolf, Joost N. H. Reek and Ben L. Feringa
{"title":"氧化铁促进光化学氧还原成过氧化氢(H2O2)","authors":"Thomas Freese, Jelmer T. Meijer, Maria B. Brands, Georgios Alachouzos, Marc C. A. Stuart, Rafael Tarozo, Dominic Gerlach, Joost Smits, Petra Rudolf, Joost N. H. Reek and Ben L. Feringa","doi":"10.1039/D3EY00256J","DOIUrl":null,"url":null,"abstract":"<p >Hydrogen peroxide (H<small><sub>2</sub></small>O<small><sub>2</sub></small>) is a valuable green oxidant with a wide range of applications. Furthermore, it is recognized as a possible future energy carrier achieving safe operation, storage and transportation. The photochemical production of H<small><sub>2</sub></small>O<small><sub>2</sub></small> serves as a promising alternative to the waste- and energy-intensive anthraquinone process. Following the 12 principles of Green Chemistry, we demonstrate a facile and general approach to sustainable catalyst development utilizing earth-abundant iron and biobased sources only. We developed several iron oxide (FeO<small><sub><em>x</em></sub></small>) nanoparticles (NPs) for successful photochemical oxygen reduction to H<small><sub>2</sub></small>O<small><sub>2</sub></small> under visible light illumination (445 nm). Achieving a selectivity for H<small><sub>2</sub></small>O<small><sub>2</sub></small> of &gt;99%, the catalyst material could be recycled for up to four consecutive rounds. An apparent quantum yield (AQY) of 0.11% was achieved for the photochemical oxygen reduction to H<small><sub>2</sub></small>O<small><sub>2</sub></small> with visible light (445 nm) at ambient temperatures and pressures (9.4–14.8 mmol g<small><sup>−1</sup></small> L<small><sup>−1</sup></small>). Reaching productivities of H<small><sub>2</sub></small>O<small><sub>2</sub></small> of at least 1.7 ± 0.3 mmol g<small><sup>−1</sup></small> L<small><sup>−1</sup></small> h<small><sup>−1</sup></small>, production of H<small><sub>2</sub></small>O<small><sub>2</sub></small> was further possible <em>via</em> sunlight irradiation and in seawater. Finally, a detailed mechanism has been proposed on the basis of experimental investigation of the catalyst's properties and computational results.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00256j?page=search","citationCount":"0","resultStr":"{\"title\":\"Iron oxide-promoted photochemical oxygen reduction to hydrogen peroxide (H2O2)†\",\"authors\":\"Thomas Freese, Jelmer T. Meijer, Maria B. Brands, Georgios Alachouzos, Marc C. A. Stuart, Rafael Tarozo, Dominic Gerlach, Joost Smits, Petra Rudolf, Joost N. H. Reek and Ben L. Feringa\",\"doi\":\"10.1039/D3EY00256J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hydrogen peroxide (H<small><sub>2</sub></small>O<small><sub>2</sub></small>) is a valuable green oxidant with a wide range of applications. Furthermore, it is recognized as a possible future energy carrier achieving safe operation, storage and transportation. The photochemical production of H<small><sub>2</sub></small>O<small><sub>2</sub></small> serves as a promising alternative to the waste- and energy-intensive anthraquinone process. Following the 12 principles of Green Chemistry, we demonstrate a facile and general approach to sustainable catalyst development utilizing earth-abundant iron and biobased sources only. We developed several iron oxide (FeO<small><sub><em>x</em></sub></small>) nanoparticles (NPs) for successful photochemical oxygen reduction to H<small><sub>2</sub></small>O<small><sub>2</sub></small> under visible light illumination (445 nm). Achieving a selectivity for H<small><sub>2</sub></small>O<small><sub>2</sub></small> of &gt;99%, the catalyst material could be recycled for up to four consecutive rounds. An apparent quantum yield (AQY) of 0.11% was achieved for the photochemical oxygen reduction to H<small><sub>2</sub></small>O<small><sub>2</sub></small> with visible light (445 nm) at ambient temperatures and pressures (9.4–14.8 mmol g<small><sup>−1</sup></small> L<small><sup>−1</sup></small>). Reaching productivities of H<small><sub>2</sub></small>O<small><sub>2</sub></small> of at least 1.7 ± 0.3 mmol g<small><sup>−1</sup></small> L<small><sup>−1</sup></small> h<small><sup>−1</sup></small>, production of H<small><sub>2</sub></small>O<small><sub>2</sub></small> was further possible <em>via</em> sunlight irradiation and in seawater. Finally, a detailed mechanism has been proposed on the basis of experimental investigation of the catalyst's properties and computational results.</p>\",\"PeriodicalId\":72877,\"journal\":{\"name\":\"EES catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00256j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EES catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d3ey00256j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d3ey00256j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

过氧化氢(H2O2)是一种具有广泛应用价值的绿色氧化剂。此外,它被认为是未来可能的能源载体,可以实现安全运行、储存和运输。光化学生产H2O2作为一种有前途的替代废物和能源密集型的蒽醌工艺。遵循绿色化学的12条原则,我们展示了一种简单而通用的方法,可以利用地球上丰富的铁和生物基来源进行可持续的催化剂开发。我们开发了几种氧化铁(FeOx)纳米颗粒(NPs),在可见光照明(445 nm)下成功地光化学氧还原为H2O2。该催化剂对H2O2的选择性达到99%,可连续循环使用4次。在环境温度和压力(9.4 ~ 14.8 mmol g−1 L−1)下,在可见光(445 nm)下光化学氧还原成H2O2的表观量子产率(AQY)为0.11%。H2O2的产率至少为1.7±0.3 mmol g−1 L−1 h−1,通过阳光照射和海水进一步生产H2O2是可能的。最后,在对催化剂性能的实验研究和计算结果的基础上,提出了详细的机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Iron oxide-promoted photochemical oxygen reduction to hydrogen peroxide (H2O2)†

Hydrogen peroxide (H2O2) is a valuable green oxidant with a wide range of applications. Furthermore, it is recognized as a possible future energy carrier achieving safe operation, storage and transportation. The photochemical production of H2O2 serves as a promising alternative to the waste- and energy-intensive anthraquinone process. Following the 12 principles of Green Chemistry, we demonstrate a facile and general approach to sustainable catalyst development utilizing earth-abundant iron and biobased sources only. We developed several iron oxide (FeOx) nanoparticles (NPs) for successful photochemical oxygen reduction to H2O2 under visible light illumination (445 nm). Achieving a selectivity for H2O2 of >99%, the catalyst material could be recycled for up to four consecutive rounds. An apparent quantum yield (AQY) of 0.11% was achieved for the photochemical oxygen reduction to H2O2 with visible light (445 nm) at ambient temperatures and pressures (9.4–14.8 mmol g−1 L−1). Reaching productivities of H2O2 of at least 1.7 ± 0.3 mmol g−1 L−1 h−1, production of H2O2 was further possible via sunlight irradiation and in seawater. Finally, a detailed mechanism has been proposed on the basis of experimental investigation of the catalyst's properties and computational results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Back cover Correction: High photocatalytic yield in the non-oxidative coupling of methane using a Pd–TiO2 nanomembrane gas flow-through reactor Embedding the intermetallic Pt5Ce alloy in mesopores through Pt–C coordination layer interactions as a stable electrocatalyst for the oxygen reduction reaction† Efficient CO2-to-CO conversion in dye-sensitized photocatalytic systems enabled by electrostatically-driven catalyst binding† Green energy driven methane conversion under mild conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1